Delete stable_cascade.py
Browse files- stable_cascade.py +0 -177
stable_cascade.py
DELETED
|
@@ -1,177 +0,0 @@
|
|
| 1 |
-
import torch, os
|
| 2 |
-
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
| 3 |
-
import gradio as gr
|
| 4 |
-
from io import BytesIO
|
| 5 |
-
import base64
|
| 6 |
-
import re
|
| 7 |
-
|
| 8 |
-
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
|
| 9 |
-
|
| 10 |
-
# Regex pattern to match data URI scheme
|
| 11 |
-
data_uri_pattern = re.compile(r'data:image/(png|jpeg|jpg|webp);base64,')
|
| 12 |
-
|
| 13 |
-
def readb64(b64):
|
| 14 |
-
# Remove any data URI scheme prefix with regex
|
| 15 |
-
b64 = data_uri_pattern.sub("", b64)
|
| 16 |
-
# Decode and open the image with PIL
|
| 17 |
-
img = Image.open(BytesIO(base64.b64decode(b64)))
|
| 18 |
-
return img
|
| 19 |
-
|
| 20 |
-
# convert from PIL to base64
|
| 21 |
-
def writeb64(image):
|
| 22 |
-
buffered = BytesIO()
|
| 23 |
-
image.save(buffered, format="PNG")
|
| 24 |
-
b64image = base64.b64encode(buffered.getvalue())
|
| 25 |
-
b64image_str = b64image.decode("utf-8")
|
| 26 |
-
return b64image_str
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to("cuda")
|
| 30 |
-
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to("cuda")
|
| 31 |
-
|
| 32 |
-
def generate_images(
|
| 33 |
-
secret_token="",
|
| 34 |
-
prompt="",
|
| 35 |
-
negative_prompt="bad,ugly,deformed",
|
| 36 |
-
height=1024,
|
| 37 |
-
width=1024,
|
| 38 |
-
guidance_scale=4.0,
|
| 39 |
-
seed=42,
|
| 40 |
-
prior_inference_steps=20,
|
| 41 |
-
decoder_inference_steps=10
|
| 42 |
-
):
|
| 43 |
-
"""
|
| 44 |
-
Generates images based on a given prompt using Stable Diffusion models on CUDA device.
|
| 45 |
-
Parameters:
|
| 46 |
-
- prompt (str): The prompt to generate images for.
|
| 47 |
-
- negative_prompt (str): The negative prompt to guide image generation away from.
|
| 48 |
-
- height (int): The height of the generated images.
|
| 49 |
-
- width (int): The width of the generated images.
|
| 50 |
-
- guidance_scale (float): The scale of guidance for the image generation.
|
| 51 |
-
- prior_inference_steps (int): The number of inference steps for the prior model.
|
| 52 |
-
- decoder_inference_steps (int): The number of inference steps for the decoder model.
|
| 53 |
-
Returns:
|
| 54 |
-
- List[PIL.Image]: A list of generated PIL Image objects.
|
| 55 |
-
"""
|
| 56 |
-
if secret_token != SECRET_TOKEN:
|
| 57 |
-
raise gr.Error(
|
| 58 |
-
f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
|
| 59 |
-
|
| 60 |
-
generator = torch.Generator(device="cuda").manual_seed(int(seed))
|
| 61 |
-
|
| 62 |
-
# Generate image embeddings using the prior model
|
| 63 |
-
prior_output = prior(
|
| 64 |
-
prompt=prompt,
|
| 65 |
-
generator=generator,
|
| 66 |
-
height=height,
|
| 67 |
-
width=width,
|
| 68 |
-
negative_prompt=negative_prompt,
|
| 69 |
-
guidance_scale=guidance_scale,
|
| 70 |
-
num_images_per_prompt=1,
|
| 71 |
-
num_inference_steps=prior_inference_steps
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
# Generate images using the decoder model and the embeddings from the prior model
|
| 75 |
-
decoder_output = decoder(
|
| 76 |
-
image_embeddings=prior_output.image_embeddings.half(),
|
| 77 |
-
prompt=prompt,
|
| 78 |
-
generator=generator,
|
| 79 |
-
negative_prompt=negative_prompt,
|
| 80 |
-
guidance_scale=0.0, # Guidance scale typically set to 0 for decoder as guidance is applied in the prior
|
| 81 |
-
output_type="pil",
|
| 82 |
-
num_inference_steps=decoder_inference_steps
|
| 83 |
-
).images
|
| 84 |
-
|
| 85 |
-
image = decoder_output[0]
|
| 86 |
-
|
| 87 |
-
image_base64 = writeb64(image)
|
| 88 |
-
|
| 89 |
-
return image_base64
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def web_demo():
|
| 93 |
-
with gr.Blocks():
|
| 94 |
-
with gr.Row():
|
| 95 |
-
with gr.Column():
|
| 96 |
-
secret_token = gr.Textbox(
|
| 97 |
-
placeholder="Secret token",
|
| 98 |
-
show_label=False,
|
| 99 |
-
)
|
| 100 |
-
text2image_prompt = gr.Textbox(
|
| 101 |
-
lines=1,
|
| 102 |
-
placeholder="Prompt",
|
| 103 |
-
show_label=False,
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
text2image_negative_prompt = gr.Textbox(
|
| 107 |
-
lines=1,
|
| 108 |
-
placeholder="Negative Prompt",
|
| 109 |
-
show_label=False,
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
text2image_seed = gr.Number(
|
| 113 |
-
value=42,
|
| 114 |
-
label="Seed",
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
with gr.Row():
|
| 118 |
-
with gr.Column():
|
| 119 |
-
text2image_height = gr.Slider(
|
| 120 |
-
minimum=128,
|
| 121 |
-
maximum=1024,
|
| 122 |
-
step=32,
|
| 123 |
-
value=1024,
|
| 124 |
-
label="Image Height",
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
text2image_width = gr.Slider(
|
| 128 |
-
minimum=128,
|
| 129 |
-
maximum=1024,
|
| 130 |
-
step=32,
|
| 131 |
-
value=1024,
|
| 132 |
-
label="Image Width",
|
| 133 |
-
)
|
| 134 |
-
with gr.Row():
|
| 135 |
-
with gr.Column():
|
| 136 |
-
text2image_guidance_scale = gr.Slider(
|
| 137 |
-
minimum=0.1,
|
| 138 |
-
maximum=15,
|
| 139 |
-
step=0.1,
|
| 140 |
-
value=4.0,
|
| 141 |
-
label="Guidance Scale",
|
| 142 |
-
)
|
| 143 |
-
text2image_prior_inference_step = gr.Slider(
|
| 144 |
-
minimum=1,
|
| 145 |
-
maximum=50,
|
| 146 |
-
step=1,
|
| 147 |
-
value=20,
|
| 148 |
-
label="Prior Inference Step",
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
text2image_decoder_inference_step = gr.Slider(
|
| 152 |
-
minimum=1,
|
| 153 |
-
maximum=50,
|
| 154 |
-
step=1,
|
| 155 |
-
value=10,
|
| 156 |
-
label="Decoder Inference Step",
|
| 157 |
-
)
|
| 158 |
-
text2image_predict = gr.Button(value="Generate Image")
|
| 159 |
-
|
| 160 |
-
output_image_base64 = gr.Text()
|
| 161 |
-
|
| 162 |
-
text2image_predict.click(
|
| 163 |
-
fn=generate_images,
|
| 164 |
-
inputs=[
|
| 165 |
-
secret_token,
|
| 166 |
-
text2image_prompt,
|
| 167 |
-
text2image_negative_prompt,
|
| 168 |
-
text2image_height,
|
| 169 |
-
text2image_width,
|
| 170 |
-
text2image_guidance_scale,
|
| 171 |
-
text2image_seed,
|
| 172 |
-
text2image_prior_inference_step,
|
| 173 |
-
text2image_decoder_inference_step
|
| 174 |
-
],
|
| 175 |
-
outputs=output_image_base64,
|
| 176 |
-
api_name='run',
|
| 177 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|