Update stable_cascade.py
Browse files- stable_cascade.py +42 -9
stable_cascade.py
CHANGED
|
@@ -1,12 +1,37 @@
|
|
| 1 |
import torch, os
|
| 2 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to("cuda")
|
| 6 |
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to("cuda")
|
| 7 |
|
| 8 |
def generate_images(
|
| 9 |
-
|
|
|
|
| 10 |
negative_prompt="bad,ugly,deformed",
|
| 11 |
height=1024,
|
| 12 |
width=1024,
|
|
@@ -29,6 +54,10 @@ def generate_images(
|
|
| 29 |
Returns:
|
| 30 |
- List[PIL.Image]: A list of generated PIL Image objects.
|
| 31 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
generator = torch.Generator(device="cuda").manual_seed(int(seed))
|
| 33 |
|
| 34 |
# Generate image embeddings using the prior model
|
|
@@ -54,13 +83,21 @@ def generate_images(
|
|
| 54 |
num_inference_steps=decoder_inference_steps
|
| 55 |
).images
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
|
| 60 |
def web_demo():
|
| 61 |
with gr.Blocks():
|
| 62 |
with gr.Row():
|
| 63 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
text2image_prompt = gr.Textbox(
|
| 65 |
lines=1,
|
| 66 |
placeholder="Prompt",
|
|
@@ -129,16 +166,12 @@ def web_demo():
|
|
| 129 |
)
|
| 130 |
text2image_predict = gr.Button(value="Generate Image")
|
| 131 |
|
| 132 |
-
|
| 133 |
-
output_image = gr.Gallery(
|
| 134 |
-
label="Generated images",
|
| 135 |
-
show_label=False,
|
| 136 |
-
elem_id="gallery",
|
| 137 |
-
).style(grid=(1, 2), height=300)
|
| 138 |
|
| 139 |
text2image_predict.click(
|
| 140 |
fn=generate_images,
|
| 141 |
inputs=[
|
|
|
|
| 142 |
text2image_prompt,
|
| 143 |
text2image_negative_prompt,
|
| 144 |
text2image_height,
|
|
@@ -149,5 +182,5 @@ def web_demo():
|
|
| 149 |
text2image_prior_inference_step,
|
| 150 |
text2image_decoder_inference_step
|
| 151 |
],
|
| 152 |
-
outputs=
|
| 153 |
)
|
|
|
|
| 1 |
import torch, os
|
| 2 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
| 3 |
import gradio as gr
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import base64
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
+
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
|
| 9 |
+
|
| 10 |
+
# Regex pattern to match data URI scheme
|
| 11 |
+
data_uri_pattern = re.compile(r'data:image/(png|jpeg|jpg|webp);base64,')
|
| 12 |
+
|
| 13 |
+
def readb64(b64):
|
| 14 |
+
# Remove any data URI scheme prefix with regex
|
| 15 |
+
b64 = data_uri_pattern.sub("", b64)
|
| 16 |
+
# Decode and open the image with PIL
|
| 17 |
+
img = Image.open(BytesIO(base64.b64decode(b64)))
|
| 18 |
+
return img
|
| 19 |
+
|
| 20 |
+
# convert from PIL to base64
|
| 21 |
+
def writeb64(image):
|
| 22 |
+
buffered = BytesIO()
|
| 23 |
+
image.save(buffered, format="PNG")
|
| 24 |
+
b64image = base64.b64encode(buffered.getvalue())
|
| 25 |
+
b64image_str = b64image.decode("utf-8")
|
| 26 |
+
return b64image_str
|
| 27 |
+
|
| 28 |
|
| 29 |
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to("cuda")
|
| 30 |
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to("cuda")
|
| 31 |
|
| 32 |
def generate_images(
|
| 33 |
+
secret_token="",
|
| 34 |
+
prompt="",
|
| 35 |
negative_prompt="bad,ugly,deformed",
|
| 36 |
height=1024,
|
| 37 |
width=1024,
|
|
|
|
| 54 |
Returns:
|
| 55 |
- List[PIL.Image]: A list of generated PIL Image objects.
|
| 56 |
"""
|
| 57 |
+
if secret_token != SECRET_TOKEN:
|
| 58 |
+
raise gr.Error(
|
| 59 |
+
f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
|
| 60 |
+
|
| 61 |
generator = torch.Generator(device="cuda").manual_seed(int(seed))
|
| 62 |
|
| 63 |
# Generate image embeddings using the prior model
|
|
|
|
| 83 |
num_inference_steps=decoder_inference_steps
|
| 84 |
).images
|
| 85 |
|
| 86 |
+
image = decoder_output[0]
|
| 87 |
+
|
| 88 |
+
image_base64 = writeb64(image)
|
| 89 |
+
|
| 90 |
+
return image_base64
|
| 91 |
|
| 92 |
|
| 93 |
def web_demo():
|
| 94 |
with gr.Blocks():
|
| 95 |
with gr.Row():
|
| 96 |
with gr.Column():
|
| 97 |
+
secret_token = gr.Textbox(
|
| 98 |
+
placeholder="Secret token",
|
| 99 |
+
show_label=False,
|
| 100 |
+
)
|
| 101 |
text2image_prompt = gr.Textbox(
|
| 102 |
lines=1,
|
| 103 |
placeholder="Prompt",
|
|
|
|
| 166 |
)
|
| 167 |
text2image_predict = gr.Button(value="Generate Image")
|
| 168 |
|
| 169 |
+
output_image_base64 = gr.Text()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
text2image_predict.click(
|
| 172 |
fn=generate_images,
|
| 173 |
inputs=[
|
| 174 |
+
secret_token,
|
| 175 |
text2image_prompt,
|
| 176 |
text2image_negative_prompt,
|
| 177 |
text2image_height,
|
|
|
|
| 182 |
text2image_prior_inference_step,
|
| 183 |
text2image_decoder_inference_step
|
| 184 |
],
|
| 185 |
+
outputs=output_image_base64,
|
| 186 |
)
|