Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
|
|
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model_repo_id = "
|
| 11 |
|
| 12 |
if torch.cuda.is_available():
|
| 13 |
torch_dtype = torch.float16
|
|
@@ -20,8 +19,10 @@ pipe = pipe.to(device)
|
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 1024
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
def infer(
|
| 26 |
prompt,
|
| 27 |
negative_prompt,
|
|
@@ -35,9 +36,7 @@ def infer(
|
|
| 35 |
):
|
| 36 |
if randomize_seed:
|
| 37 |
seed = random.randint(0, MAX_SEED)
|
| 38 |
-
|
| 39 |
generator = torch.Generator().manual_seed(seed)
|
| 40 |
-
|
| 41 |
image = pipe(
|
| 42 |
prompt=prompt,
|
| 43 |
negative_prompt=negative_prompt,
|
|
@@ -47,10 +46,8 @@ def infer(
|
|
| 47 |
height=height,
|
| 48 |
generator=generator,
|
| 49 |
).images[0]
|
| 50 |
-
|
| 51 |
return image, seed
|
| 52 |
|
| 53 |
-
|
| 54 |
examples = [
|
| 55 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
"An astronaut riding a green horse",
|
|
@@ -66,8 +63,13 @@ css = """
|
|
| 66 |
|
| 67 |
with gr.Blocks(css=css) as demo:
|
| 68 |
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown("
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
with gr.Row():
|
| 72 |
prompt = gr.Text(
|
| 73 |
label="Prompt",
|
|
@@ -76,11 +78,8 @@ with gr.Blocks(css=css) as demo:
|
|
| 76 |
placeholder="Enter your prompt",
|
| 77 |
container=False,
|
| 78 |
)
|
| 79 |
-
|
| 80 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 81 |
-
|
| 82 |
result = gr.Image(label="Result", show_label=False)
|
| 83 |
-
|
| 84 |
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
negative_prompt = gr.Text(
|
| 86 |
label="Negative prompt",
|
|
@@ -88,7 +87,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 88 |
placeholder="Enter a negative prompt",
|
| 89 |
visible=False,
|
| 90 |
)
|
| 91 |
-
|
| 92 |
seed = gr.Slider(
|
| 93 |
label="Seed",
|
| 94 |
minimum=0,
|
|
@@ -96,44 +94,46 @@ with gr.Blocks(css=css) as demo:
|
|
| 96 |
step=1,
|
| 97 |
value=0,
|
| 98 |
)
|
| 99 |
-
|
| 100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
-
|
| 102 |
with gr.Row():
|
| 103 |
width = gr.Slider(
|
| 104 |
label="Width",
|
| 105 |
minimum=256,
|
| 106 |
maximum=MAX_IMAGE_SIZE,
|
| 107 |
step=32,
|
| 108 |
-
value=1024,
|
| 109 |
)
|
| 110 |
-
|
| 111 |
height = gr.Slider(
|
| 112 |
label="Height",
|
| 113 |
minimum=256,
|
| 114 |
maximum=MAX_IMAGE_SIZE,
|
| 115 |
step=32,
|
| 116 |
-
value=1024,
|
| 117 |
)
|
| 118 |
-
|
| 119 |
with gr.Row():
|
| 120 |
guidance_scale = gr.Slider(
|
| 121 |
label="Guidance scale",
|
| 122 |
minimum=0.0,
|
| 123 |
maximum=10.0,
|
| 124 |
step=0.1,
|
| 125 |
-
value=0.0,
|
| 126 |
)
|
| 127 |
-
|
| 128 |
num_inference_steps = gr.Slider(
|
| 129 |
label="Number of inference steps",
|
| 130 |
minimum=1,
|
| 131 |
maximum=50,
|
| 132 |
step=1,
|
| 133 |
-
value=2,
|
| 134 |
)
|
| 135 |
-
|
| 136 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
gr.on(
|
| 138 |
triggers=[run_button.click, prompt.submit],
|
| 139 |
fn=infer,
|
|
@@ -151,4 +151,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
|
|
|
| 4 |
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
model_repo_id = "stabilityai/sdxl-turbo" # 替換成你要使用的模型
|
| 10 |
|
| 11 |
if torch.cuda.is_available():
|
| 12 |
torch_dtype = torch.float16
|
|
|
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
MAX_IMAGE_SIZE = 1024
|
| 21 |
|
| 22 |
+
# 載入你的 dataset,這裡假設有一個 "prompt" 欄位
|
| 23 |
+
dataset = load_dataset("jeffyuyu/labeled_images_demo_BLIP2", split="train")
|
| 24 |
+
dataset_prompts = list(dataset["prompt"])
|
| 25 |
|
|
|
|
| 26 |
def infer(
|
| 27 |
prompt,
|
| 28 |
negative_prompt,
|
|
|
|
| 36 |
):
|
| 37 |
if randomize_seed:
|
| 38 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 39 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
| 40 |
image = pipe(
|
| 41 |
prompt=prompt,
|
| 42 |
negative_prompt=negative_prompt,
|
|
|
|
| 46 |
height=height,
|
| 47 |
generator=generator,
|
| 48 |
).images[0]
|
|
|
|
| 49 |
return image, seed
|
| 50 |
|
|
|
|
| 51 |
examples = [
|
| 52 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 53 |
"An astronaut riding a green horse",
|
|
|
|
| 63 |
|
| 64 |
with gr.Blocks(css=css) as demo:
|
| 65 |
with gr.Column(elem_id="col-container"):
|
| 66 |
+
gr.Markdown("# Text-to-Image Gradio Template")
|
| 67 |
+
# 新增下拉選單,從 dataset 中選取 prompt
|
| 68 |
+
dataset_selector = gr.Dropdown(
|
| 69 |
+
choices=dataset_prompts,
|
| 70 |
+
label="或從資料集中選取一個 prompt",
|
| 71 |
+
value=dataset_prompts[0] if dataset_prompts else "",
|
| 72 |
+
)
|
| 73 |
with gr.Row():
|
| 74 |
prompt = gr.Text(
|
| 75 |
label="Prompt",
|
|
|
|
| 78 |
placeholder="Enter your prompt",
|
| 79 |
container=False,
|
| 80 |
)
|
|
|
|
| 81 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
|
|
|
| 82 |
result = gr.Image(label="Result", show_label=False)
|
|
|
|
| 83 |
with gr.Accordion("Advanced Settings", open=False):
|
| 84 |
negative_prompt = gr.Text(
|
| 85 |
label="Negative prompt",
|
|
|
|
| 87 |
placeholder="Enter a negative prompt",
|
| 88 |
visible=False,
|
| 89 |
)
|
|
|
|
| 90 |
seed = gr.Slider(
|
| 91 |
label="Seed",
|
| 92 |
minimum=0,
|
|
|
|
| 94 |
step=1,
|
| 95 |
value=0,
|
| 96 |
)
|
|
|
|
| 97 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
| 98 |
with gr.Row():
|
| 99 |
width = gr.Slider(
|
| 100 |
label="Width",
|
| 101 |
minimum=256,
|
| 102 |
maximum=MAX_IMAGE_SIZE,
|
| 103 |
step=32,
|
| 104 |
+
value=1024,
|
| 105 |
)
|
|
|
|
| 106 |
height = gr.Slider(
|
| 107 |
label="Height",
|
| 108 |
minimum=256,
|
| 109 |
maximum=MAX_IMAGE_SIZE,
|
| 110 |
step=32,
|
| 111 |
+
value=1024,
|
| 112 |
)
|
|
|
|
| 113 |
with gr.Row():
|
| 114 |
guidance_scale = gr.Slider(
|
| 115 |
label="Guidance scale",
|
| 116 |
minimum=0.0,
|
| 117 |
maximum=10.0,
|
| 118 |
step=0.1,
|
| 119 |
+
value=0.0,
|
| 120 |
)
|
|
|
|
| 121 |
num_inference_steps = gr.Slider(
|
| 122 |
label="Number of inference steps",
|
| 123 |
minimum=1,
|
| 124 |
maximum=50,
|
| 125 |
step=1,
|
| 126 |
+
value=2,
|
| 127 |
)
|
|
|
|
| 128 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 129 |
+
|
| 130 |
+
# 按鈕:使用下拉選單選取的 prompt 填入上面的 prompt 輸入框
|
| 131 |
+
def fill_prompt(selected_prompt):
|
| 132 |
+
return selected_prompt
|
| 133 |
+
|
| 134 |
+
dataset_btn = gr.Button("填入資料集中的 prompt")
|
| 135 |
+
dataset_btn.click(fn=fill_prompt, inputs=dataset_selector, outputs=prompt)
|
| 136 |
+
|
| 137 |
gr.on(
|
| 138 |
triggers=[run_button.click, prompt.submit],
|
| 139 |
fn=infer,
|
|
|
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
+
demo.launch()
|