Spaces:
Runtime error
Runtime error
File size: 15,329 Bytes
b9bac12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import csv
import os
from operator import itemgetter
import numpy as np
from dijkprofile_annotator.config import (CLASS_DICT_FULL, CLASS_DICT_REGIONAL,
CLASS_DICT_SIMPLE,
CLASS_DICT_SIMPLE_BERM,
CLASS_DICT_SIMPLE_SLOOT)
from dijkprofile_annotator.dataset import DijkprofileDataset
from sklearn.model_selection import train_test_split
def read_surfaceline_file(surfaceline_fp):
"""Read surfaceline file and convert to dict.
Args:
surfaceline_fp (string): path to the surfacelines file.
Returns:
dict: dict containing list of points per location.
"""
# read the coordinates and collect to surfaceline_dict
surfacelines = {}
with open(surfaceline_fp) as csvfile:
surfacereader = csv.reader(csvfile, delimiter=';', quotechar='|')
next(surfacereader) # skip header
# print("header: {}".format(header)) # not very useful
stop_exec = False
for row in surfacereader:
if stop_exec:
break
location = row[0]
surfacelines[location] = []
for i in range(1, len(row)-2, 3):
# some files have empty points
if row[i] == '' or row[i+1] == '' or row[i+2] == '':
continue
try:
x = _parse_coordinate(row[i].replace('"', ''))
y = _parse_coordinate(row[i+1].replace('"', ''))
z = _parse_coordinate(row[i+2].replace('"', ''))
surfacelines[location].append((x, y, z))
except ValueError as e:
print(f"error reading point from surfaceline at location: {location} (index: {i}), error: {e}")
stop_exec = True
break
return surfacelines
def read_charpoints_file(charlines_fp):
"""Read characteristicpoints file and convert to dict.
Args:
charlines_fp (string): path to characteristicpoints file.
Returns:
dict: dict containing list of points per location.
"""
charpoints = {}
with open(charlines_fp) as csvfile:
cpointsreader = csv.reader(csvfile, delimiter=';', quotechar='|')
header = next(cpointsreader)
stop_exec = False
for idx, row in enumerate(cpointsreader):
if stop_exec:
break
try:
location = row[0]
except IndexError as e:
print(f"couldn't read location in row: {row} at {idx}, file: {charlines_fp}")
point_dict = {}
for i in range(1, len(row)-2, 3):
if row[i] == '' or row[i+1] == '' or row[i+2] == '':
continue
try:
x = _parse_coordinate(row[i].replace('"', ''))
y = _parse_coordinate(row[i+1].replace('"', ''))
z = _parse_coordinate(row[i+2].replace('"', ''))
point_dict[header[i][2:]] = (x, y, z)
except ValueError as e:
print(
f"error reading point from characteristicpoints at location: {location} (index: {i}), error: {e}")
stop_exec = True
charpoints[location] = point_dict
return charpoints
def _parse_coordinate(coord):
"""Convert string point coordinate to float, remove double dots if needed.
Some of the coordinates contain multiple dots, probably because someone
opened the file in excel and it formatted it weird. In all examples I've
seen the first point is only to indicate 1000's and can savely be removed
Args:
point (str): string representation of the number to parse
Returns:
float: float representation of the coordinate
"""
try:
return float(coord)
except:
parts = coord.split(".")
return float("".join(parts[:-1]) + "." + parts[-1])
def make_height_profiles(surfaceline_dict, max_profile_size):
"""Make height arrays from surfacelines dict.
Args:
surfaceline_dict (dict): dict of surfacelines by location.
max_profile_size (int): fixed max size for the height profile.
Returns:
dict: dict containing height profiles by location.
"""
profile_dict = {}
for location in surfaceline_dict.keys():
heights = np.array(surfaceline_dict[location])[:, 2].astype(np.float32)
# we'll fit whole profile in a fixed length so that multiple profiles can be used as samples
z_tmp = np.zeros(max_profile_size)
profile_length = heights.shape[0]
if profile_length < max_profile_size:
z_tmp[:profile_length] = np.array(heights, dtype=np.float32)[:profile_length]
z_tmp[profile_length:] = heights[profile_length-1]
heights = z_tmp
else:
heights = heights[:max_profile_size]
profile_dict[location] = {"profile": heights}
return profile_dict
def make_labeled_height_profiles(surfaceline_dict, cpoints_dict, max_profile_size, class_list='simple', require_all_points=True):
"""Make height profile and labels from surfacelines and cpoints.
Args:
surfaceline_dict (dict): dict of surfacelines by location.
cpoints_dict (dict): dict of characteristic points by location.
max_profile_size (int): fixed max size for the height profile.
class_list (bool): selection of classes to use, see config.
require_all_points: filter profiles that do not contain all the points in the class_list.
Returns:
dict: dict containing height profiles and their labels by location.
"""
profile_label_dict = {}
class_list = class_list.lower()
class_dict = {}
if class_list == 'regional':
class_dict = CLASS_DICT_REGIONAL
elif class_list == 'simple':
class_dict = CLASS_DICT_SIMPLE
elif class_list == 'berm':
class_dict = CLASS_DICT_SIMPLE_BERM
elif class_list == 'sloot':
class_dict = CLASS_DICT_SIMPLE_SLOOT
elif class_list == 'full':
class_dict = CLASS_DICT_FULL
else:
raise NotImplementedError(f"No class list available of type: {class_list}")
required_point_types = list(class_dict.keys())
required_point_types.remove('leeg') # we don't want to require check for the empty class
for location in surfaceline_dict.keys():
heights = np.array(surfaceline_dict[location])[:, 2].astype(np.float32)
labels = np.zeros(len(heights))
# if no labels were given for this location, skip it
if not location in cpoints_dict.keys():
# print(f"location not in cpoints dict, {location}")
continue
# skip the location if the required points are not all present
if require_all_points:
labeled_point_types = [key for key, value in cpoints_dict[location].items() if value != (-1.0, -1.0, -1.0)]
if not all([point_type in labeled_point_types for point_type in required_point_types]):
# print(f"not all point types present, missing {set(required_point_types) - set(labeled_point_types)}")
continue
for i, (key, point) in enumerate(cpoints_dict[location].items()):
# if the point is not empty, find the nearest point in the surface file,
# problems with rounding errors require matching by distance per point
if point == (-1.0, -1.0, -1.0):
continue
distances = []
for idx, surfacepoint in enumerate(surfaceline_dict[location]):
dist = np.linalg.norm(np.array(surfacepoint)-np.array(point))
distances.append((idx, dist))
(idx, dist) = sorted(distances, key=itemgetter(1))[0]
if key in class_dict:
labels[idx] = class_dict[key]
# forward fill the labels
for i in range(1, len(labels)):
if labels[i] == 0.0:
labels[i] = labels[i-1]
# we'll fit whole profile in a fixed length so that multiple profiles can be used as samples
z_tmp = np.zeros(max_profile_size)
labels_tmp = np.zeros(max_profile_size)
profile_length = labels.shape[0]
if profile_length < max_profile_size:
z_tmp[:profile_length] = np.array(heights, dtype=np.float32)[:profile_length]
labels_tmp[:profile_length] = np.array(labels)[:profile_length]
z_tmp[profile_length:] = heights[profile_length-1]
labels_tmp[profile_length:] = labels[profile_length-1]
heights = z_tmp
labels = labels_tmp
else:
heights = heights[:max_profile_size]
labels = labels[:max_profile_size]
# rescale every profile to between -1 and 1
# scaler = MinMaxScaler(feature_range=(-1, 1))
# heights = scaler.fit_transform(heights.reshape(-1, 1))
profile_label_dict[location] = {}
profile_label_dict[location]['profile'] = heights.astype(np.float32)
profile_label_dict[location]['label'] = labels.astype(np.int32)
return profile_label_dict
def filepath_pair_to_labeled_sample(source_surfacelines, source_characteristicpoints, max_profile_size=352, class_list='simple', require_all_points=True):
"""Convert pair of surfacelines and characteristicpoints filepaths to format suited for machine learning.
Args:
source_surfacelines (string): path to the surfacelines file.
source_characteristicpoints (string): path to the characteristicpoints file.
max_profile_size (int, optional): max size for the profile. Defaults to 352.
regional (bool): use regional point labelset, see config. Defaults to False.
Returns:
dict: dict containing height profile and labels by location.
"""
surfaceline_dict = read_surfaceline_file(source_surfacelines)
cpoints_dict = read_charpoints_file(source_characteristicpoints)
profile_label_dict = make_labeled_height_profiles(
surfaceline_dict,
cpoints_dict,
max_profile_size,
class_list=class_list,
require_all_points=require_all_points)
return profile_label_dict
def file_pairs_to_tensor_profiles(filepair_list, max_profile_size=352, class_list='simple', require_all_points=True):
"""Convert list of pairs of surfacelines and characteristicpoints to format suited for machine learning.
Args:
filepair_list (list): list of tuples containing the paths to the surfacelines and characteristicpoints files.
max_profile_size (int, optional): max size for the profile. Defaults to 352.
regional (bool): use regional point labelset, see config. Defaults to False.
Returns:
dict: Dict containing all the height profiles and labels by location.
"""
all_profiles = {}
for source_surfacelines, source_characteristicpoints in filepair_list:
profile_label_dict = filepath_pair_to_labeled_sample(
source_surfacelines,
source_characteristicpoints,
max_profile_size,
class_list,
require_all_points=require_all_points)
for key, value in profile_label_dict.items():
all_profiles[key] = value
return all_profiles
def get_file_pairs_from_dir(path, krp_format=False):
"""Recursively get all pairs of lines and points files in a directory.
Args:
path (str): path to the root directory containing the lines and points csv files,
directory is searched recursively for pairs.
krp (bool): Indicates that the folder contains csv files in the naming convention used by
waterschap Vallei en Veluwe.
Returns:
list: list of tuples where the first item is the path to the surfacelines.csv and the second
the path to the characteristicpoints.csv
"""
if krp_format:
return _get_file_pairs_from_dir_krp(path)
list_of_files = []
for (dirpath, _, filenames) in os.walk(path):
for filename in filenames:
if filename.endswith('lines.csv'):
if os.path.exists(os.sep.join([dirpath, filename])) and \
os.path.exists(os.sep.join([dirpath, 'characteristicpoints.csv'])):
list_of_files.append((
os.sep.join([dirpath, filename]),
os.sep.join([dirpath, 'characteristicpoints.csv'])))
return list_of_files
def _get_file_pairs_from_dir_krp(path):
"""Recursively get all pairs of lines and points files in a directory but in the format used
by Waterschap Vallei en Veluwe, same functionality as get_file_pairs_from_dir.
Args:
path (str): path to the root directory containing the lines and points csv files,
directory is searched recursively for pairs
Returns:
list: list of tuples where the first item is the path to the surfacelines.csv and the second
the path to the characteristicpoints.csv
"""
list_of_files = []
for (dirpath, _, filenames) in os.walk(path):
for filename in filenames:
if filename.endswith('.krp.csv'):
if os.path.exists(os.sep.join([dirpath, filename])) and \
os.path.exists(os.sep.join([dirpath, filename.split(".krp")[0] + ".csv"])):
list_of_files.append((
os.sep.join([dirpath, filename.split(".krp")[0] + ".csv"]),
os.sep.join([dirpath, filename])))
return list_of_files
def load_datasets(annotation_tuples, custom_scaler_path=None, test_size=0.2, max_profile_size=512, class_list='simple', require_all_points=True):
"""Load datasets given list of annotation tuples.
Args:
annotation_tuples ([(str,str)]): list of tuples of filepaths to the lines and points files.
custom_scaler_path (str, optional): path to a custom scaler to rescale the data. Defaults to None.
test_size (float, optional): Test size for the training. Defaults to 0.2.
max_profile_size (int, optional): max profile size. Defaults to 512.
class_list (str, optional): class_mapping/class_list to use. Defaults to 'simple'.
require_all_points (bool, optional): wether to drop profiles that don't contain all points in the mapping. Defaults to True.
Returns:
DijkprofileDataset, DijkprofileDataset: train and test dataset classes
"""
profile_dict = file_pairs_to_tensor_profiles(annotation_tuples, max_profile_size=max_profile_size, class_list=class_list, require_all_points=require_all_points)
# construct dataloaders
id_list = list(profile_dict.keys())
[train, test] = train_test_split(id_list, shuffle=True, test_size=test_size)
dataset_train = DijkprofileDataset(profile_dict, train, custom_scaler_path=custom_scaler_path)
dataset_validation = DijkprofileDataset(profile_dict, test, custom_scaler_path=custom_scaler_path)
return dataset_train, dataset_validation
|