Upload 5 files
Browse files- Dockerfile +24 -0
- README.md +16 -10
- docker-compose.yml +15 -0
- package.json +17 -0
- server.js +347 -0
Dockerfile
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 使用官方 Node.js 18 LTS 镜像作为基础
|
| 2 |
+
FROM node:18-alpine
|
| 3 |
+
|
| 4 |
+
# 设置工作目录
|
| 5 |
+
WORKDIR /usr/src/app
|
| 6 |
+
|
| 7 |
+
# 复制 package.json 和 package-lock.json (如果存在)
|
| 8 |
+
COPY package*.json ./
|
| 9 |
+
|
| 10 |
+
# 安装项目依赖
|
| 11 |
+
RUN npm install
|
| 12 |
+
|
| 13 |
+
# 复制应用源代码
|
| 14 |
+
COPY . .
|
| 15 |
+
|
| 16 |
+
# 暴露应用程序使用的端口
|
| 17 |
+
EXPOSE 3000
|
| 18 |
+
|
| 19 |
+
# 定义环境变量 (可以在 docker-compose 中覆盖)
|
| 20 |
+
ENV PORT=3000
|
| 21 |
+
# FAL_KEY 应该在运行时通过 docker-compose 传入,而不是硬编码在这里
|
| 22 |
+
|
| 23 |
+
# 运行应用程序的命令
|
| 24 |
+
CMD [ "npm", "start" ]
|
README.md
CHANGED
|
@@ -1,10 +1,16 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## openai请求格式转fal
|
| 2 |
+
输入限制: System prompt 和 prompt 分别最长为 5000 字符(不是 token)。
|
| 3 |
+
|
| 4 |
+
输出长度: 测试了下输出长篇小说,出了 5W 多 token。
|
| 5 |
+
|
| 6 |
+
上下文: 不支持。
|
| 7 |
+
|
| 8 |
+
于是用 gemini 糊了个 openaiToFal 的服务,模拟上下文以 5000 字符为分界线,分别塞到 System prompt 和 prompt,这样可以把输入扩展到 1W 字符,太早的聊天记录会被顶掉。github 地址是一个 docker compose 包,把你的 key 填入 docker-compose.yml,一键启动 docker compose up -d 即可。默认端口 13000。
|
| 9 |
+
|
| 10 |
+
## 部署步骤
|
| 11 |
+
1、修改docker-compose.yml填入fal的api key
|
| 12 |
+
|
| 13 |
+
2、`docker compose up -d`启动
|
| 14 |
+
|
| 15 |
+
## 重要
|
| 16 |
+
我是搭配newapi管理使用,所以**没有鉴权**,有需要自己加。
|
docker-compose.yml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
services:
|
| 2 |
+
fal-openai-proxy:
|
| 3 |
+
build: . # 构建当前目录下的 Dockerfile
|
| 4 |
+
container_name: fal_openai_proxy
|
| 5 |
+
ports:
|
| 6 |
+
- "13000:3000" # 将主机的 3000 端口映射到容器的 3000 端口
|
| 7 |
+
environment:
|
| 8 |
+
# 在这里设置你的 Fal AI API Key
|
| 9 |
+
# 或者,为了安全起见,你可以创建一个 .env 文件,并在其中定义 FAL_KEY
|
| 10 |
+
# 然后取消下面行的注释:
|
| 11 |
+
# env_file:
|
| 12 |
+
# - .env
|
| 13 |
+
FAL_KEY: "" # !! 重要:替换为你的真实 Fal AI Key !!
|
| 14 |
+
PORT: 3000 # 确保容器内的端口与 Dockerfile 和 server.js 中一致
|
| 15 |
+
restart: unless-stopped # 服务失败时自动重启,除非手动停止
|
package.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "fal-openai-proxy",
|
| 3 |
+
"version": "1.0.0",
|
| 4 |
+
"description": "Proxy server to convert OpenAI requests to fal-ai format",
|
| 5 |
+
"main": "server.js",
|
| 6 |
+
"type": "module",
|
| 7 |
+
"scripts": {
|
| 8 |
+
"start": "node server.js"
|
| 9 |
+
},
|
| 10 |
+
"dependencies": {
|
| 11 |
+
"@fal-ai/client": "latest",
|
| 12 |
+
"express": "^4.19.2"
|
| 13 |
+
},
|
| 14 |
+
"engines": {
|
| 15 |
+
"node": ">=18.0.0"
|
| 16 |
+
}
|
| 17 |
+
}
|
server.js
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import express from 'express';
|
| 2 |
+
import { fal } from '@fal-ai/client';
|
| 3 |
+
|
| 4 |
+
// 从环境变量读取 Fal AI API Key
|
| 5 |
+
const FAL_KEY = process.env.FAL_KEY;
|
| 6 |
+
if (!FAL_KEY) {
|
| 7 |
+
console.error("Error: FAL_KEY environment variable is not set.");
|
| 8 |
+
process.exit(1);
|
| 9 |
+
}
|
| 10 |
+
|
| 11 |
+
// 配置 fal 客户端
|
| 12 |
+
fal.config({
|
| 13 |
+
credentials: FAL_KEY,
|
| 14 |
+
});
|
| 15 |
+
|
| 16 |
+
const app = express();
|
| 17 |
+
app.use(express.json({ limit: '50mb' }));
|
| 18 |
+
app.use(express.urlencoded({ extended: true, limit: '50mb' }));
|
| 19 |
+
|
| 20 |
+
const PORT = process.env.PORT || 3000;
|
| 21 |
+
|
| 22 |
+
// === 全局定义限制 ===
|
| 23 |
+
const PROMPT_LIMIT = 4800;
|
| 24 |
+
const SYSTEM_PROMPT_LIMIT = 4800;
|
| 25 |
+
// === 限制定义结束 ===
|
| 26 |
+
|
| 27 |
+
// 定义 fal-ai/any-llm 支持的模型列表
|
| 28 |
+
const FAL_SUPPORTED_MODELS = [
|
| 29 |
+
"anthropic/claude-3.7-sonnet",
|
| 30 |
+
"anthropic/claude-3.5-sonnet",
|
| 31 |
+
"anthropic/claude-3-5-haiku",
|
| 32 |
+
"anthropic/claude-3-haiku",
|
| 33 |
+
"google/gemini-pro-1.5",
|
| 34 |
+
"google/gemini-flash-1.5",
|
| 35 |
+
"google/gemini-flash-1.5-8b",
|
| 36 |
+
"google/gemini-2.0-flash-001",
|
| 37 |
+
"meta-llama/llama-3.2-1b-instruct",
|
| 38 |
+
"meta-llama/llama-3.2-3b-instruct",
|
| 39 |
+
"meta-llama/llama-3.1-8b-instruct",
|
| 40 |
+
"meta-llama/llama-3.1-70b-instruct",
|
| 41 |
+
"openai/gpt-4o-mini",
|
| 42 |
+
"openai/gpt-4o",
|
| 43 |
+
"deepseek/deepseek-r1",
|
| 44 |
+
"meta-llama/llama-4-maverick",
|
| 45 |
+
"meta-llama/llama-4-scout"
|
| 46 |
+
];
|
| 47 |
+
|
| 48 |
+
// Helper function to get owner from model ID
|
| 49 |
+
const getOwner = (modelId) => {
|
| 50 |
+
if (modelId && modelId.includes('/')) {
|
| 51 |
+
return modelId.split('/')[0];
|
| 52 |
+
}
|
| 53 |
+
return 'fal-ai';
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
// GET /v1/models endpoint
|
| 57 |
+
app.get('/v1/models', (req, res) => {
|
| 58 |
+
console.log("Received request for GET /v1/models");
|
| 59 |
+
try {
|
| 60 |
+
const modelsData = FAL_SUPPORTED_MODELS.map(modelId => ({
|
| 61 |
+
id: modelId, object: "model", created: 1700000000, owned_by: getOwner(modelId)
|
| 62 |
+
}));
|
| 63 |
+
res.json({ object: "list", data: modelsData });
|
| 64 |
+
console.log("Successfully returned model list.");
|
| 65 |
+
} catch (error) {
|
| 66 |
+
console.error("Error processing GET /v1/models:", error);
|
| 67 |
+
res.status(500).json({ error: "Failed to retrieve model list." });
|
| 68 |
+
}
|
| 69 |
+
});
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
// === 修改后的 convertMessagesToFalPrompt 函数 (System置顶 + 分隔符 + 对话历史Recency) ===
|
| 73 |
+
function convertMessagesToFalPrompt(messages) {
|
| 74 |
+
let fixed_system_prompt_content = "";
|
| 75 |
+
const conversation_message_blocks = [];
|
| 76 |
+
console.log(`Original messages count: ${messages.length}`);
|
| 77 |
+
|
| 78 |
+
// 1. 分离 System 消息,格式化 User/Assistant 消息
|
| 79 |
+
for (const message of messages) {
|
| 80 |
+
let content = (message.content === null || message.content === undefined) ? "" : String(message.content);
|
| 81 |
+
switch (message.role) {
|
| 82 |
+
case 'system':
|
| 83 |
+
fixed_system_prompt_content += `System: ${content}\n\n`;
|
| 84 |
+
break;
|
| 85 |
+
case 'user':
|
| 86 |
+
conversation_message_blocks.push(`Human: ${content}\n\n`);
|
| 87 |
+
break;
|
| 88 |
+
case 'assistant':
|
| 89 |
+
conversation_message_blocks.push(`Assistant: ${content}\n\n`);
|
| 90 |
+
break;
|
| 91 |
+
default:
|
| 92 |
+
console.warn(`Unsupported role: ${message.role}`);
|
| 93 |
+
continue;
|
| 94 |
+
}
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
// 2. 截断合并后的 system 消息(如果超长)
|
| 98 |
+
if (fixed_system_prompt_content.length > SYSTEM_PROMPT_LIMIT) {
|
| 99 |
+
const originalLength = fixed_system_prompt_content.length;
|
| 100 |
+
fixed_system_prompt_content = fixed_system_prompt_content.substring(0, SYSTEM_PROMPT_LIMIT);
|
| 101 |
+
console.warn(`Combined system messages truncated from ${originalLength} to ${SYSTEM_PROMPT_LIMIT}`);
|
| 102 |
+
}
|
| 103 |
+
// 清理末尾可能多余的空白,以便后续判断和拼接
|
| 104 |
+
fixed_system_prompt_content = fixed_system_prompt_content.trim();
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
// 3. 计算 system_prompt 中留给对话历史的剩余空间
|
| 108 |
+
// 注意:这里计算时要考虑分隔符可能占用的长度,但分隔符只在需要时添加
|
| 109 |
+
// 因此先计算不含分隔符的剩余空间
|
| 110 |
+
let space_occupied_by_fixed_system = 0;
|
| 111 |
+
if (fixed_system_prompt_content.length > 0) {
|
| 112 |
+
// 如果固定内容不为空,计算其长度 + 后面可能的分隔符的长度(如果需要)
|
| 113 |
+
// 暂时只计算内容长度,分隔符在组合时再考虑
|
| 114 |
+
space_occupied_by_fixed_system = fixed_system_prompt_content.length + 4; // 预留 \n\n...\n\n 的长度
|
| 115 |
+
}
|
| 116 |
+
const remaining_system_limit = Math.max(0, SYSTEM_PROMPT_LIMIT - space_occupied_by_fixed_system);
|
| 117 |
+
console.log(`Trimmed fixed system prompt length: ${fixed_system_prompt_content.length}. Approx remaining system history limit: ${remaining_system_limit}`);
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
// 4. 反向填充 User/Assistant 对话历史
|
| 121 |
+
const prompt_history_blocks = [];
|
| 122 |
+
const system_prompt_history_blocks = [];
|
| 123 |
+
let current_prompt_length = 0;
|
| 124 |
+
let current_system_history_length = 0;
|
| 125 |
+
let promptFull = false;
|
| 126 |
+
let systemHistoryFull = (remaining_system_limit <= 0);
|
| 127 |
+
|
| 128 |
+
console.log(`Processing ${conversation_message_blocks.length} user/assistant messages for recency filling.`);
|
| 129 |
+
for (let i = conversation_message_blocks.length - 1; i >= 0; i--) {
|
| 130 |
+
const message_block = conversation_message_blocks[i];
|
| 131 |
+
const block_length = message_block.length;
|
| 132 |
+
|
| 133 |
+
if (promptFull && systemHistoryFull) {
|
| 134 |
+
console.log(`Both prompt and system history slots full. Omitting older messages from index ${i}.`);
|
| 135 |
+
break;
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
// 优先尝试放入 prompt
|
| 139 |
+
if (!promptFull) {
|
| 140 |
+
if (current_prompt_length + block_length <= PROMPT_LIMIT) {
|
| 141 |
+
prompt_history_blocks.unshift(message_block);
|
| 142 |
+
current_prompt_length += block_length;
|
| 143 |
+
continue;
|
| 144 |
+
} else {
|
| 145 |
+
promptFull = true;
|
| 146 |
+
console.log(`Prompt limit (${PROMPT_LIMIT}) reached. Trying system history slot.`);
|
| 147 |
+
}
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
// 如果 prompt 满了,尝试放入 system_prompt 的剩余空间
|
| 151 |
+
if (!systemHistoryFull) {
|
| 152 |
+
if (current_system_history_length + block_length <= remaining_system_limit) {
|
| 153 |
+
system_prompt_history_blocks.unshift(message_block);
|
| 154 |
+
current_system_history_length += block_length;
|
| 155 |
+
continue;
|
| 156 |
+
} else {
|
| 157 |
+
systemHistoryFull = true;
|
| 158 |
+
console.log(`System history limit (${remaining_system_limit}) reached.`);
|
| 159 |
+
}
|
| 160 |
+
}
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
// 5. *** 组合最终的 prompt 和 system_prompt (包含分隔符逻辑) ***
|
| 164 |
+
const system_prompt_history_content = system_prompt_history_blocks.join('').trim();
|
| 165 |
+
const final_prompt = prompt_history_blocks.join('').trim();
|
| 166 |
+
|
| 167 |
+
// 定义分隔符
|
| 168 |
+
const SEPARATOR = "\n\n-------下面是比较早之前的对话内容-----\n\n";
|
| 169 |
+
|
| 170 |
+
let final_system_prompt = "";
|
| 171 |
+
|
| 172 |
+
// 检查各部分是否有内容 (使用 trim 后的固定部分)
|
| 173 |
+
const hasFixedSystem = fixed_system_prompt_content.length > 0;
|
| 174 |
+
const hasSystemHistory = system_prompt_history_content.length > 0;
|
| 175 |
+
|
| 176 |
+
if (hasFixedSystem && hasSystemHistory) {
|
| 177 |
+
// 两部分都有,用分隔符连接
|
| 178 |
+
final_system_prompt = fixed_system_prompt_content + SEPARATOR + system_prompt_history_content;
|
| 179 |
+
console.log("Combining fixed system prompt and history with separator.");
|
| 180 |
+
} else if (hasFixedSystem) {
|
| 181 |
+
// 只有固定部分
|
| 182 |
+
final_system_prompt = fixed_system_prompt_content;
|
| 183 |
+
console.log("Using only fixed system prompt.");
|
| 184 |
+
} else if (hasSystemHistory) {
|
| 185 |
+
// 只有历史部分 (固定部分为空)
|
| 186 |
+
final_system_prompt = system_prompt_history_content;
|
| 187 |
+
console.log("Using only history in system prompt slot.");
|
| 188 |
+
}
|
| 189 |
+
// 如果两部分都为空,final_system_prompt 保持空字符串 ""
|
| 190 |
+
|
| 191 |
+
// 6. 返回结果
|
| 192 |
+
const result = {
|
| 193 |
+
system_prompt: final_system_prompt, // 最终结果不需要再 trim
|
| 194 |
+
prompt: final_prompt // final_prompt 在组合前已 trim
|
| 195 |
+
};
|
| 196 |
+
|
| 197 |
+
console.log(`Final system_prompt length (Sys+Separator+Hist): ${result.system_prompt.length}`);
|
| 198 |
+
console.log(`Final prompt length (Hist): ${result.prompt.length}`);
|
| 199 |
+
|
| 200 |
+
return result;
|
| 201 |
+
}
|
| 202 |
+
// === convertMessagesToFalPrompt 函数结束 ===
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
// POST /v1/chat/completions endpoint (保持不变)
|
| 206 |
+
app.post('/v1/chat/completions', async (req, res) => {
|
| 207 |
+
const { model, messages, stream = false, reasoning = false, ...restOpenAIParams } = req.body;
|
| 208 |
+
|
| 209 |
+
console.log(`Received chat completion request for model: ${model}, stream: ${stream}`);
|
| 210 |
+
|
| 211 |
+
if (!FAL_SUPPORTED_MODELS.includes(model)) {
|
| 212 |
+
console.warn(`Warning: Requested model '${model}' is not in the explicitly supported list.`);
|
| 213 |
+
}
|
| 214 |
+
if (!model || !messages || !Array.isArray(messages) || messages.length === 0) {
|
| 215 |
+
console.error("Invalid request parameters:", { model, messages: Array.isArray(messages) ? messages.length : typeof messages });
|
| 216 |
+
return res.status(400).json({ error: 'Missing or invalid parameters: model and messages array are required.' });
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
try {
|
| 220 |
+
// *** 使用更新后的转换函数 ***
|
| 221 |
+
const { prompt, system_prompt } = convertMessagesToFalPrompt(messages);
|
| 222 |
+
|
| 223 |
+
const falInput = {
|
| 224 |
+
model: model,
|
| 225 |
+
prompt: prompt,
|
| 226 |
+
...(system_prompt && { system_prompt: system_prompt }),
|
| 227 |
+
reasoning: !!reasoning,
|
| 228 |
+
};
|
| 229 |
+
console.log("Fal Input:", JSON.stringify(falInput, null, 2));
|
| 230 |
+
console.log("Forwarding request to fal-ai with system-priority + separator + recency input:");
|
| 231 |
+
console.log("System Prompt Length:", system_prompt?.length || 0);
|
| 232 |
+
console.log("Prompt Length:", prompt?.length || 0);
|
| 233 |
+
// 调试时取消注释可以查看具体内容
|
| 234 |
+
console.log("--- System Prompt Start ---");
|
| 235 |
+
console.log(system_prompt);
|
| 236 |
+
console.log("--- System Prompt End ---");
|
| 237 |
+
console.log("--- Prompt Start ---");
|
| 238 |
+
console.log(prompt);
|
| 239 |
+
console.log("--- Prompt End ---");
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
// --- 流式/非流式处理逻辑 (保持不变) ---
|
| 243 |
+
if (stream) {
|
| 244 |
+
// ... 流式代码 ...
|
| 245 |
+
res.setHeader('Content-Type', 'text/event-stream; charset=utf-8');
|
| 246 |
+
res.setHeader('Cache-Control', 'no-cache');
|
| 247 |
+
res.setHeader('Connection', 'keep-alive');
|
| 248 |
+
res.setHeader('Access-Control-Allow-Origin', '*');
|
| 249 |
+
res.flushHeaders();
|
| 250 |
+
|
| 251 |
+
let previousOutput = '';
|
| 252 |
+
|
| 253 |
+
const falStream = await fal.stream("fal-ai/any-llm", { input: falInput });
|
| 254 |
+
|
| 255 |
+
try {
|
| 256 |
+
for await (const event of falStream) {
|
| 257 |
+
const currentOutput = (event && typeof event.output === 'string') ? event.output : '';
|
| 258 |
+
const isPartial = (event && typeof event.partial === 'boolean') ? event.partial : true;
|
| 259 |
+
const errorInfo = (event && event.error) ? event.error : null;
|
| 260 |
+
|
| 261 |
+
if (errorInfo) {
|
| 262 |
+
console.error("Error received in fal stream event:", errorInfo);
|
| 263 |
+
const errorChunk = { id: `chatcmpl-${Date.now()}-error`, object: "chat.completion.chunk", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, delta: {}, finish_reason: "error", message: { role: 'assistant', content: `Fal Stream Error: ${JSON.stringify(errorInfo)}` } }] };
|
| 264 |
+
res.write(`data: ${JSON.stringify(errorChunk)}\n\n`);
|
| 265 |
+
break;
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
let deltaContent = '';
|
| 269 |
+
if (currentOutput.startsWith(previousOutput)) {
|
| 270 |
+
deltaContent = currentOutput.substring(previousOutput.length);
|
| 271 |
+
} else if (currentOutput.length > 0) {
|
| 272 |
+
console.warn("Fal stream output mismatch detected. Sending full current output as delta.", { previousLength: previousOutput.length, currentLength: currentOutput.length });
|
| 273 |
+
deltaContent = currentOutput;
|
| 274 |
+
previousOutput = '';
|
| 275 |
+
}
|
| 276 |
+
previousOutput = currentOutput;
|
| 277 |
+
|
| 278 |
+
if (deltaContent || !isPartial) {
|
| 279 |
+
const openAIChunk = { id: `chatcmpl-${Date.now()}`, object: "chat.completion.chunk", created: Math.floor(Date.now() / 1000), model: model, choices: [{ index: 0, delta: { content: deltaContent }, finish_reason: isPartial === false ? "stop" : null }] };
|
| 280 |
+
res.write(`data: ${JSON.stringify(openAIChunk)}\n\n`);
|
| 281 |
+
}
|
| 282 |
+
}
|
| 283 |
+
res.write(`data: [DONE]\n\n`);
|
| 284 |
+
res.end();
|
| 285 |
+
console.log("Stream finished.");
|
| 286 |
+
|
| 287 |
+
} catch (streamError) {
|
| 288 |
+
console.error('Error during fal stream processing loop:', streamError);
|
| 289 |
+
try {
|
| 290 |
+
const errorDetails = (streamError instanceof Error) ? streamError.message : JSON.stringify(streamError);
|
| 291 |
+
res.write(`data: ${JSON.stringify({ error: { message: "Stream processing error", type: "proxy_error", details: errorDetails } })}\n\n`);
|
| 292 |
+
res.write(`data: [DONE]\n\n`);
|
| 293 |
+
res.end();
|
| 294 |
+
} catch (finalError) {
|
| 295 |
+
console.error('Error sending stream error message to client:', finalError);
|
| 296 |
+
if (!res.writableEnded) { res.end(); }
|
| 297 |
+
}
|
| 298 |
+
}
|
| 299 |
+
} else {
|
| 300 |
+
// --- 非流式处理 (保持不变) ---
|
| 301 |
+
console.log("Executing non-stream request...");
|
| 302 |
+
const result = await fal.subscribe("fal-ai/any-llm", { input: falInput, logs: true });
|
| 303 |
+
console.log("Received non-stream result from fal-ai:", JSON.stringify(result, null, 2));
|
| 304 |
+
|
| 305 |
+
if (result && result.error) {
|
| 306 |
+
console.error("Fal-ai returned an error in non-stream mode:", result.error);
|
| 307 |
+
return res.status(500).json({ object: "error", message: `Fal-ai error: ${JSON.stringify(result.error)}`, type: "fal_ai_error", param: null, code: null });
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
const openAIResponse = {
|
| 311 |
+
id: `chatcmpl-${result.requestId || Date.now()}`, object: "chat.completion", created: Math.floor(Date.now() / 1000), model: model,
|
| 312 |
+
choices: [{ index: 0, message: { role: "assistant", content: result.output || "" }, finish_reason: "stop" }],
|
| 313 |
+
usage: { prompt_tokens: null, completion_tokens: null, total_tokens: null }, system_fingerprint: null,
|
| 314 |
+
...(result.reasoning && { fal_reasoning: result.reasoning }),
|
| 315 |
+
};
|
| 316 |
+
res.json(openAIResponse);
|
| 317 |
+
console.log("Returned non-stream response.");
|
| 318 |
+
}
|
| 319 |
+
|
| 320 |
+
} catch (error) {
|
| 321 |
+
console.error('Unhandled error in /v1/chat/completions:', error);
|
| 322 |
+
if (!res.headersSent) {
|
| 323 |
+
const errorMessage = (error instanceof Error) ? error.message : JSON.stringify(error);
|
| 324 |
+
res.status(500).json({ error: 'Internal Server Error in Proxy', details: errorMessage });
|
| 325 |
+
} else if (!res.writableEnded) {
|
| 326 |
+
console.error("Headers already sent, ending response.");
|
| 327 |
+
res.end();
|
| 328 |
+
}
|
| 329 |
+
}
|
| 330 |
+
});
|
| 331 |
+
|
| 332 |
+
// 启动服务器 (更新启动信息)
|
| 333 |
+
app.listen(PORT, () => {
|
| 334 |
+
console.log(`===================================================`);
|
| 335 |
+
console.log(` Fal OpenAI Proxy Server (System Top + Separator + Recency)`); // 更新策略名称
|
| 336 |
+
console.log(` Listening on port: ${PORT}`);
|
| 337 |
+
console.log(` Using Limits: System Prompt=${SYSTEM_PROMPT_LIMIT}, Prompt=${PROMPT_LIMIT}`);
|
| 338 |
+
console.log(` Fal AI Key Loaded: ${FAL_KEY ? 'Yes' : 'No'}`);
|
| 339 |
+
console.log(` Chat Completions Endpoint: POST http://localhost:${PORT}/v1/chat/completions`);
|
| 340 |
+
console.log(` Models Endpoint: GET http://localhost:${PORT}/v1/models`);
|
| 341 |
+
console.log(`===================================================`);
|
| 342 |
+
});
|
| 343 |
+
|
| 344 |
+
// 根路径响应 (更新信息)
|
| 345 |
+
app.get('/', (req, res) => {
|
| 346 |
+
res.send('Fal OpenAI Proxy (System Top + Separator + Recency Strategy) is running.');
|
| 347 |
+
});
|