Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,353 Bytes
888f9e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
import torch
import numpy as np
import cv2
import os
from typing import Dict, List, Tuple, Optional, Any, Union
from transformers import Pipeline
import tempfile
import uuid
from .vine_config import VineConfig
from .vine_model import VineModel
from .vis_utils import render_dino_frames, render_sam_frames, render_vine_frame_sets
from laser.loading import load_video
from laser.preprocess.mask_generation_grounding_dino import generate_masks_grounding_dino
class VinePipeline(Pipeline):
"""
Pipeline for VINE model that handles end-to-end video understanding.
This pipeline takes a video file or frames, along with segmentation method
and keyword lists, and returns probability distributions over the keywords.
Segmentation Model Configuration:
The pipeline requires SAM2 and GroundingDINO models for mask generation.
You can configure custom paths via constructor kwargs:
- sam_config_path: Path to SAM2 config (e.g., "configs/sam2.1/sam2.1_hiera_b+.yaml")
- sam_checkpoint_path: Path to SAM2 checkpoint (e.g., "checkpoints/sam2.1_hiera_base_plus.pt")
- gd_config_path: Path to GroundingDINO config (e.g., "groundingdino/config/GroundingDINO_SwinT_OGC.py")
- gd_checkpoint_path: Path to GroundingDINO checkpoint (e.g., "checkpoints/groundingdino_swint_ogc.pth")
Old:
- SAM2: ~/research/sam2/ or /home/asethi04/LASER_NEW/LASER/sam2/
- GroundingDINO: /home/asethi04/LASER_NEW/LASER/GroundingDINO/
Alternative: Use set_segmentation_models() to provide pre-initialized model instances.
"""
def __init__(
self,
sam_config_path: Optional[str] = None,
sam_checkpoint_path: Optional[str] = None,
gd_config_path: Optional[str] = None,
gd_checkpoint_path: Optional[str] = None,
**kwargs
):
self.grounding_model = None
self.sam_predictor = None
self.mask_generator = None
self.sam_config_path = sam_config_path
self.sam_checkpoint_path = sam_checkpoint_path
self.gd_config_path = gd_config_path
self.gd_checkpoint_path = gd_checkpoint_path
super().__init__(**kwargs)
# Set default parameters from config
self.segmentation_method = getattr(self.model.config, 'segmentation_method', 'grounding_dino_sam2')
self.box_threshold = getattr(self.model.config, 'box_threshold', 0.35)
self.text_threshold = getattr(self.model.config, 'text_threshold', 0.25)
self.target_fps = getattr(self.model.config, 'target_fps', 1)
self.visualize = getattr(self.model.config, 'visualize', False)
self.visualization_dir = getattr(self.model.config, 'visualization_dir', None)
self.debug_visualizations = getattr(self.model.config, 'debug_visualizations', False)
self._device = getattr(self.model.config, '_device')
if kwargs.get("device") is not None:
self._device = kwargs.get("device")
def set_segmentation_models(
self,
*,
sam_predictor=None,
mask_generator=None,
grounding_model=None
):
"""
Set pre-initialized segmentation models, bypassing automatic initialization/current_values
Args:
sam_predictor: Pre-built SAM2 video predictor
mask_generator: Pre-built SAM2 automatic mask generator
grounding_model: Pre-built GroundingDINO model
"""
if sam_predictor is not None:
self.sam_predictor = sam_predictor
if mask_generator is not None:
self.mask_generator = mask_generator
if grounding_model is not None:
self.grounding_model = grounding_model
def _sanitize_parameters(self, **kwargs):
"""Sanitize parameters for different pipeline stages."""
preprocess_kwargs = {}
forward_kwargs = {}
postprocess_kwargs = {}
# Preprocess parameters
if "segmentation_method" in kwargs:
preprocess_kwargs["segmentation_method"] = kwargs["segmentation_method"]
if "target_fps" in kwargs:
preprocess_kwargs["target_fps"] = kwargs["target_fps"]
if "box_threshold" in kwargs:
preprocess_kwargs["box_threshold"] = kwargs["box_threshold"]
if "text_threshold" in kwargs:
preprocess_kwargs["text_threshold"] = kwargs["text_threshold"]
if "categorical_keywords" in kwargs:
preprocess_kwargs["categorical_keywords"] = kwargs["categorical_keywords"]
# Forward parameters
if "categorical_keywords" in kwargs:
forward_kwargs["categorical_keywords"] = kwargs["categorical_keywords"]
if "unary_keywords" in kwargs:
forward_kwargs["unary_keywords"] = kwargs["unary_keywords"]
if "binary_keywords" in kwargs:
forward_kwargs["binary_keywords"] = kwargs["binary_keywords"]
if "object_pairs" in kwargs:
forward_kwargs["object_pairs"] = kwargs["object_pairs"]
if "return_flattened_segments" in kwargs:
forward_kwargs["return_flattened_segments"] = kwargs["return_flattened_segments"]
if "return_valid_pairs" in kwargs:
forward_kwargs["return_valid_pairs"] = kwargs["return_valid_pairs"]
if "interested_object_pairs" in kwargs:
forward_kwargs["interested_object_pairs"] = kwargs["interested_object_pairs"]
if "debug_visualizations" in kwargs:
forward_kwargs["debug_visualizations"] = kwargs["debug_visualizations"]
postprocess_kwargs["debug_visualizations"] = kwargs["debug_visualizations"]
# Postprocess parameters
if "return_top_k" in kwargs:
postprocess_kwargs["return_top_k"] = kwargs["return_top_k"]
if "self.visualize" in kwargs:
postprocess_kwargs["self.visualize"] = kwargs["self.visualize"]
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
def preprocess(
self,
video_input: Union[str, np.ndarray, torch.Tensor],
segmentation_method: str = None,
target_fps: int = None,
box_threshold: float = None,
text_threshold: float = None,
categorical_keywords: List[str] = None,
**kwargs
) -> Dict[str, Any]:
"""
Preprocess video input and generate masks.
Args:
video_input: Path to video file, or video tensor/array
segmentation_method: "sam2" or "grounding_dino_sam2"
target_fps: Target FPS for video processing
box_threshold: Box threshold for Grounding DINO
text_threshold: Text threshold for Grounding DINO
categorical_keywords: Keywords for Grounding DINO segmentation
Returns:
Dict containing video frames, masks, and bboxes
"""
# Use defaults from config if not provided
if segmentation_method is None:
segmentation_method = self.segmentation_method
if target_fps is None:
target_fps = self.target_fps
if box_threshold is None:
box_threshold = self.box_threshold
if text_threshold is None:
text_threshold = self.text_threshold
if categorical_keywords is None:
categorical_keywords = ["object"] # Default generic category
if isinstance(video_input, str):
# Video file path
video_tensor = load_video(video_input, target_fps=target_fps)
if isinstance(video_tensor, list):
video_tensor = np.array(video_tensor)
elif isinstance(video_tensor, torch.Tensor):
video_tensor = video_tensor.cpu().numpy()
elif isinstance(video_input, (np.ndarray, torch.Tensor)):
# Video tensor/array
if isinstance(video_input, torch.Tensor):
video_tensor = video_input.numpy()
else:
video_tensor = video_input
else:
raise ValueError(f"Unsupported video input type: {type(video_input)}")
# Ensure video tensor is numpy array
if not isinstance(video_tensor, np.ndarray):
video_tensor = np.array(video_tensor)
# Ensure video tensor is in correct format
if len(video_tensor.shape) != 4:
raise ValueError(f"Expected video tensor shape (frames, height, width, channels), got {video_tensor.shape}")
# Generate masks and bboxes based on segmentation method
visualization_data: Dict[str, Any] = {}
print(f"Segmentation method: {segmentation_method}")
if segmentation_method == "sam2":
masks, bboxes, vis_data = self._generate_sam2_masks(video_tensor)
elif segmentation_method == "grounding_dino_sam2":
masks, bboxes, vis_data = self._generate_grounding_dino_sam2_masks(
video_tensor, categorical_keywords, box_threshold, text_threshold, video_input
)
else:
raise ValueError(f"Unsupported segmentation method: {segmentation_method}")
if vis_data:
visualization_data.update(vis_data)
visualization_data.setdefault("sam_masks", masks)
return {
"video_frames": torch.tensor(video_tensor),
"masks": masks,
"bboxes": bboxes,
"num_frames": len(video_tensor),
"visualization_data": visualization_data,
}
def _generate_sam2_masks(self, video_tensor: np.ndarray) -> Tuple[Dict, Dict, Dict[str, Any]]:
"""Generate masks using SAM2 automatic mask generation."""
# Initialize SAM2 models if not already done
print("Generating SAM2 masks...")
if self.mask_generator is None:
self._initialize_segmentation_models()
if self.mask_generator is None:
raise ValueError("SAM2 mask generator not available")
masks: Dict[int, Dict[int, torch.Tensor]] = {}
bboxes: Dict[int, Dict[int, List[int]]] = {}
for frame_id, frame in enumerate(video_tensor):
if isinstance(frame, np.ndarray) and frame.dtype != np.uint8:
frame = (frame * 255).astype(np.uint8) if frame.max() <= 1 else frame.astype(np.uint8)
height, width, _ = frame.shape
frame_masks = self.mask_generator.generate(frame)
masks[frame_id] = {}
bboxes[frame_id] = {}
for obj_id, mask_data in enumerate(frame_masks):
mask = mask_data["segmentation"]
if isinstance(mask, np.ndarray):
mask = torch.from_numpy(mask)
if len(mask.shape) == 2:
mask = mask.unsqueeze(-1)
elif len(mask.shape) == 3 and mask.shape[0] == 1:
mask = mask.permute(1, 2, 0)
wrapped_id = obj_id + 1
masks[frame_id][wrapped_id] = mask
mask_np = mask.squeeze().numpy() if isinstance(mask, torch.Tensor) else mask.squeeze()
coords = np.where(mask_np > 0)
if len(coords[0]) > 0:
y1, y2 = coords[0].min(), coords[0].max()
x1, x2 = coords[1].min(), coords[1].max()
bboxes[frame_id][wrapped_id] = [x1, y1, x2, y2]
return masks, bboxes, {"sam_masks": masks}
def _generate_grounding_dino_sam2_masks(
self,
video_tensor: np.ndarray,
categorical_keywords: List[str],
box_threshold: float,
text_threshold: float,
video_path: str,
) -> Tuple[Dict, Dict, Dict[str, Any]]:
"""Generate masks using Grounding DINO + SAM2."""
# Initialize models if not already done
print("Generating Grounding DINO + SAM2 masks...")
if self.grounding_model is None or self.sam_predictor is None:
self._initialize_segmentation_models()
if self.grounding_model is None or self.sam_predictor is None:
raise ValueError("GroundingDINO or SAM2 models not available")
temp_video_path = None
if video_path is None or not isinstance(video_path, str):
temp_video_path = self._create_temp_video(video_tensor)
video_path = temp_video_path
CHUNK = 5
classes_ls = [categorical_keywords[i:i + CHUNK] for i in range(0, len(categorical_keywords), CHUNK)]
video_segments, oid_class_pred, _ = generate_masks_grounding_dino(
self.grounding_model,
box_threshold,
text_threshold,
self.sam_predictor,
self.mask_generator,
video_tensor,
video_path,
"temp_video",
out_dir=tempfile.gettempdir(),
classes_ls=classes_ls,
target_fps=self.target_fps,
visualize=self.debug_visualizations,
frames=None,
max_prop_time=10
)
masks: Dict[int, Dict[int, torch.Tensor]] = {}
bboxes: Dict[int, Dict[int, List[int]]] = {}
for frame_id, frame_masks in video_segments.items():
masks[frame_id] = {}
bboxes[frame_id] = {}
for obj_id, mask in frame_masks.items():
if not isinstance(mask, torch.Tensor):
mask = torch.tensor(mask)
masks[frame_id][obj_id] = mask
mask_np = mask.numpy()
if mask_np.ndim == 3 and mask_np.shape[0] == 1:
mask_np = np.squeeze(mask_np, axis=0)
coords = np.where(mask_np > 0)
if len(coords[0]) > 0:
y1, y2 = coords[0].min(), coords[0].max()
x1, x2 = coords[1].min(), coords[1].max()
bboxes[frame_id][obj_id] = [x1, y1, x2, y2]
if temp_video_path and os.path.exists(temp_video_path):
os.remove(temp_video_path)
vis_data: Dict[str, Any] = {
"sam_masks": masks,
"dino_labels": oid_class_pred,
}
return masks, bboxes, vis_data
def _initialize_segmentation_models(self):
"""Initialize segmentation models based on the requested method and configured paths."""
if (self.sam_predictor is None or self.mask_generator is None):
self._initialize_sam2_models()
if self.grounding_model is None:
self._initialize_grounding_dino_model()
def _initialize_sam2_models(self):
"""Initialize SAM2 video predictor and mask generator."""
try:
from sam2.build_sam import build_sam2_video_predictor, build_sam2
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
except ImportError as e:
print(f"Warning: Could not import SAM2: {e}")
return
# Resolve SAM2 paths
config_path, checkpoint_path = self._resolve_sam2_paths()
# Validate paths if custom ones were provided
if self.sam_config_path is not None and not os.path.exists(config_path):
raise ValueError(f"SAM2 config path not found: {config_path}")
if self.sam_checkpoint_path is not None and not os.path.exists(checkpoint_path):
raise ValueError(f"SAM2 checkpoint path not found: {checkpoint_path}")
# Only proceed if we have valid paths
if not os.path.exists(checkpoint_path):
print(f"Warning: SAM2 checkpoint not found at {checkpoint_path}")
print("SAM2 functionality will be unavailable")
return
try:
device = self._device
print(type(device))
# Video predictor
self.sam_predictor = build_sam2_video_predictor(
config_path, checkpoint_path, device=device
)
# Mask generator
sam2_model = build_sam2(config_path, checkpoint_path, device=device, apply_postprocessing=False)
self.mask_generator = SAM2AutomaticMaskGenerator(
model=sam2_model,
points_per_side=32,
points_per_batch=32,
pred_iou_thresh=0.7,
stability_score_thresh=0.8,
crop_n_layers=2,
box_nms_thresh=0.6,
crop_n_points_downscale_factor=2,
min_mask_region_area=100,
use_m2m=True,
)
print("✓ SAM2 models initialized successfully")
except Exception as e:
raise ValueError(f"Failed to initialize SAM2 with custom paths: {e}")
def _initialize_grounding_dino_model(self):
"""Initialize GroundingDINO model."""
try:
from groundingdino.util.inference import Model as gd_Model
except ImportError as e:
print(f"Warning: Could not import GroundingDINO: {e}")
return
# Resolve GroundingDINO paths
config_path, checkpoint_path = self._resolve_grounding_dino_paths()
# Validate paths if custom ones were provided
if self.gd_config_path is not None and not os.path.exists(config_path):
raise ValueError(f"GroundingDINO config path not found: {config_path}")
if self.gd_checkpoint_path is not None and not os.path.exists(checkpoint_path):
raise ValueError(f"GroundingDINO checkpoint path not found: {checkpoint_path}")
# Only proceed if we have valid paths
if not (os.path.exists(config_path) and os.path.exists(checkpoint_path)):
print(f"Warning: GroundingDINO models not found at {config_path} / {checkpoint_path}")
print("GroundingDINO functionality will be unavailable")
return
try:
device = self._device
print(type(device))
self.grounding_model = gd_Model(
model_config_path=config_path,
model_checkpoint_path=checkpoint_path,
device=device
)
print("✓ GroundingDINO model initialized successfully")
except Exception as e:
raise ValueError(f"Failed to initialize GroundingDINO with custom paths: {e}")
def _resolve_sam2_paths(self):
"""Resolve SAM2 config and checkpoint paths."""
# Use custom paths if provided
if self.sam_config_path and self.sam_checkpoint_path:
return self.sam_config_path, self.sam_checkpoint_path
def _resolve_grounding_dino_paths(self):
"""Resolve GroundingDINO config and checkpoint paths."""
# Use custom paths if provided
if self.gd_config_path and self.gd_checkpoint_path:
return self.gd_config_path, self.gd_checkpoint_path
def _prepare_visualization_dir(self, name: str, enabled: bool) -> Optional[str]:
"""
Ensure a directory exists for visualization artifacts and return it.
If visualization is disabled, returns None.
"""
if not enabled:
return None
if self.visualization_dir:
target_dir = os.path.join(self.visualization_dir, name) if name else self.visualization_dir
os.makedirs(target_dir, exist_ok=True)
return target_dir
return tempfile.mkdtemp(prefix=f"vine_{name}_")
def _create_temp_video(self, video_tensor: np.ndarray, base_dir: Optional[str] = None, prefix: str = "temp_video") -> str:
"""Create a temporary video file from video tensor."""
if base_dir is None:
base_dir = tempfile.mkdtemp(prefix=f"vine_{prefix}_")
else:
os.makedirs(base_dir, exist_ok=True)
file_name = f"{prefix}_{uuid.uuid4().hex}.mp4"
temp_path = os.path.join(base_dir, file_name)
# Use OpenCV to write video
height, width = video_tensor.shape[1:3]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(temp_path, fourcc, self.target_fps, (width, height))
for frame in video_tensor:
# Convert RGB to BGR for OpenCV
if len(frame.shape) == 3 and frame.shape[2] == 3:
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
else:
frame_bgr = frame
out.write(frame_bgr.astype(np.uint8))
out.release()
return temp_path
def _forward(self, model_inputs: Dict[str, Any], **forward_kwargs) -> Dict[str, Any]:
"""Forward pass through the model."""
outputs = self.model.predict(
video_frames=model_inputs["video_frames"],
masks=model_inputs["masks"],
bboxes=model_inputs["bboxes"],
**forward_kwargs
)
outputs.setdefault("video_frames", model_inputs.get("video_frames"))
outputs.setdefault("bboxes", model_inputs.get("bboxes"))
outputs.setdefault("masks", model_inputs.get("masks"))
outputs.setdefault("visualization_data", model_inputs.get("visualization_data"))
return outputs
def postprocess(
self,
model_outputs: Dict[str, Any],
return_top_k: int = 3,
visualize: Optional[bool] = None,
**kwargs
) -> Dict[str, Any]:
"""
Postprocess model outputs into user-friendly format.
Args:
model_outputs: Raw model outputs
return_top_k: Number of top predictions to return
self.visualize: Whether to include visualization data
Returns:
Formatted results
"""
results = {
"categorical_predictions": model_outputs.get("categorical_predictions", {}),
"unary_predictions": model_outputs.get("unary_predictions", {}),
"binary_predictions": model_outputs.get("binary_predictions", {}),
"confidence_scores": model_outputs.get("confidence_scores", {}),
"summary": self._generate_summary(model_outputs)
}
if "flattened_segments" in model_outputs:
results["flattened_segments"] = model_outputs["flattened_segments"]
if "valid_pairs" in model_outputs:
results["valid_pairs"] = model_outputs["valid_pairs"]
if "valid_pairs_metadata" in model_outputs:
results["valid_pairs_metadata"] = model_outputs["valid_pairs_metadata"]
if "visualization_data" in model_outputs:
results["visualization_data"] = model_outputs["visualization_data"]
if self.visualize and "video_frames" in model_outputs and "bboxes" in model_outputs:
frames_tensor = model_outputs["video_frames"]
if isinstance(frames_tensor, torch.Tensor):
frames_np = frames_tensor.detach().cpu().numpy()
else:
frames_np = np.asarray(frames_tensor)
if frames_np.dtype != np.uint8:
if np.issubdtype(frames_np.dtype, np.floating):
max_val = frames_np.max() if frames_np.size else 0.0
scale = 255.0 if max_val <= 1.0 else 1.0
frames_np = (frames_np * scale).clip(0, 255).astype(np.uint8)
else:
frames_np = frames_np.clip(0, 255).astype(np.uint8)
cat_label_lookup: Dict[int, Tuple[str, float]] = {}
for obj_id, preds in model_outputs.get("categorical_predictions", {}).items():
if preds:
prob, label = preds[0]
cat_label_lookup[obj_id] = (label, prob)
unary_preds = model_outputs.get("unary_predictions", {})
unary_lookup: Dict[int, Dict[int, List[Tuple[float, str]]]] = {}
for (frame_id, obj_id), preds in unary_preds.items():
if preds:
unary_lookup.setdefault(frame_id, {})[obj_id] = preds
binary_preds = model_outputs.get("binary_predictions", {})
binary_lookup: Dict[int, List[Tuple[Tuple[int, int], List[Tuple[float, str]]]]] = {}
for (frame_id, obj_pair), preds in binary_preds.items():
if preds:
binary_lookup.setdefault(frame_id, []).append((obj_pair, preds))
bboxes = model_outputs["bboxes"]
visualization_data = model_outputs.get("visualization_data", {})
visualizations: Dict[str, Dict[str, Any]] = {}
debug_visualizations = kwargs.get("debug_visualizations")
if debug_visualizations is None:
debug_visualizations = self.debug_visualizations
vine_frame_sets = render_vine_frame_sets(
frames_np,
bboxes,
cat_label_lookup,
unary_lookup,
binary_lookup,
visualization_data.get("sam_masks"),
)
vine_visuals: Dict[str, Dict[str, Any]] = {}
final_frames = vine_frame_sets.get("all", [])
if final_frames:
final_entry: Dict[str, Any] = {"frames": final_frames, "video_path": None}
final_dir = self._prepare_visualization_dir("all", enabled=self.visualize)
final_entry["video_path"] = self._create_temp_video(
np.stack(final_frames, axis=0),
base_dir=final_dir,
prefix="all_visualization"
)
vine_visuals["all"] = final_entry
if debug_visualizations:
sam_masks = visualization_data.get("sam_masks")
if sam_masks:
sam_frames = render_sam_frames(frames_np, sam_masks, visualization_data.get("dino_labels"))
sam_entry = {"frames": sam_frames, "video_path": None}
if sam_frames:
sam_dir = self._prepare_visualization_dir("sam", enabled=self.visualize)
sam_entry["video_path"] = self._create_temp_video(
np.stack(sam_frames, axis=0),
base_dir=sam_dir,
prefix="sam_visualization"
)
visualizations["sam"] = sam_entry
dino_labels = visualization_data.get("dino_labels")
if dino_labels:
dino_frames = render_dino_frames(frames_np, bboxes, dino_labels)
dino_entry = {"frames": dino_frames, "video_path": None}
if dino_frames:
dino_dir = self._prepare_visualization_dir("dino", enabled=self.visualize)
dino_entry["video_path"] = self._create_temp_video(
np.stack(dino_frames, axis=0),
base_dir=dino_dir,
prefix="dino_visualization"
)
visualizations["dino"] = dino_entry
for name in ("object", "unary", "binary"):
frames_list = vine_frame_sets.get(name, [])
entry: Dict[str, Any] = {"frames": frames_list, "video_path": None}
if frames_list:
vine_dir = self._prepare_visualization_dir(name, enabled=self.visualize)
entry["video_path"] = self._create_temp_video(
np.stack(frames_list, axis=0),
base_dir=vine_dir,
prefix=f"{name}_visualization"
)
vine_visuals[name] = entry
if vine_visuals:
visualizations["vine"] = vine_visuals
if visualizations:
results["visualizations"] = visualizations
return results
def _generate_summary(self, model_outputs: Dict[str, Any]) -> Dict[str, Any]:
"""Generate a summary of the predictions."""
categorical_preds = model_outputs.get("categorical_predictions", {})
unary_preds = model_outputs.get("unary_predictions", {})
binary_preds = model_outputs.get("binary_predictions", {})
summary = {
"num_objects_detected": len(categorical_preds),
"num_unary_predictions": len(unary_preds),
"num_binary_predictions": len(binary_preds),
"top_categories": [],
"top_actions": [],
"top_relations": []
}
# Extract top categories
all_categories = []
for obj_preds in categorical_preds.values():
if obj_preds:
all_categories.extend(obj_preds)
if all_categories:
sorted_categories = sorted(all_categories, reverse=True)
summary["top_categories"] = [(cat, prob) for prob, cat in sorted_categories[:3]]
# Extract top actions
all_actions = []
for action_preds in unary_preds.values():
if action_preds:
all_actions.extend(action_preds)
if all_actions:
sorted_actions = sorted(all_actions, reverse=True)
summary["top_actions"] = [(act, prob) for prob, act in sorted_actions[:3]]
# Extract top relations
all_relations = []
for rel_preds in binary_preds.values():
if rel_preds:
all_relations.extend(rel_preds)
if all_relations:
sorted_relations = sorted(all_relations, reverse=True)
summary["top_relations"] = [(rel, prob) for prob, rel in sorted_relations[:3]]
return summary
|