Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,040 Bytes
888f9e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "44d53281",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/kevinx/miniconda3/envs/laser_env/lib/python3.10/site-packages/pydantic/_internal/_config.py:383: UserWarning: Valid config keys have changed in V2:\n",
"* 'schema_extra' has been renamed to 'json_schema_extra'\n",
" warnings.warn(message, UserWarning)\n",
"Warning : `load_model` does not return WordVectorModel or SupervisedModel any more, but a `FastText` object which is very similar.\n",
"Warning : `load_model` does not return WordVectorModel or SupervisedModel any more, but a `FastText` object which is very similar.\n"
]
}
],
"source": [
"import os\n",
"import sys\n",
"import torch\n",
"from transformers import pipeline, AutoModel\n",
"from transformers.pipelines import PIPELINE_REGISTRY\n",
"\n",
"# Uncomment or set your own\n",
"#os.environ['OPENAI_API_KEY'] = 'dummy-key'\n",
"from vine_hf import VineConfig, VineModel, VinePipeline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "174e479f",
"metadata": {},
"outputs": [],
"source": [
"PIPELINE_REGISTRY.register_pipeline(\n",
" \"vine-video-understanding\",\n",
" pipeline_class=VinePipeline,\n",
" pt_model=VineModel,\n",
" type=\"multimodal\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9af2770",
"metadata": {},
"outputs": [],
"source": [
"vine_config = VineConfig(\n",
" model_name=\"openai/clip-vit-base-patch32\",\n",
" # Local file example: set use_hf_repo=False and provide local_dir/local_filename\n",
" use_hf_repo=False,\n",
" local_dir=os.path.dirname('/path/to/your/pretrained/model.pt'),\n",
" local_filename=os.path.basename('/path/to/your/pretrained/model.pt'), # Local file path\n",
" segmentation_method=\"grounding_dino_sam2\",\n",
" visualize=True,\n",
" visualization_dir=\"path/to/visualization/dir\",\n",
" debug_visualizations=True,\n",
" device=0, # Change to your desired device\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "274e6515",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded state type: <class 'collections.OrderedDict'>\n"
]
}
],
"source": [
"vine_pipeline = VinePipeline(\n",
" model=VineModel(vine_config), \n",
" tokenizer=None,\n",
" sam_config_path=\"path/to/sam2/configs/sam2_hiera_base_plus.yaml\",\n",
" sam_checkpoint_path=\"path/to/sam2/checkpoints/sam2.1_hiera_base_plus.pt\",\n",
" gd_config_path=\"path/to/GroundingDINO/config/GroundingDINO_SwinT_OGC.py\",\n",
" gd_checkpoint_path=\"path/to/GroundingDINO/checkpoints/groundingdino_swint_ogc.pth\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "123a090d",
"metadata": {},
"outputs": [],
"source": [
"categorical_keywords = ['human', 'dog', 'frisbee']\n",
"unary_keywords = ['running', 'jumping', 'catching', 'throwing']\n",
"binary_keywords = ['behind', 'in front of', 'next to', 'chasing']\n",
"object_pairs = [(0, 1), (0, 2), (1, 2)] # human-dog, dog-frisbee relationships "
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0b42f032",
"metadata": {},
"outputs": [],
"source": [
"demo_video_path = \"/home/kevinx/LASER/LASER/demo/videos/v1.mp4\" # Replace with your video file path"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8202c654",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Segmentation method: grounding_dino_sam2\n",
"Generating Grounding DINO + SAM2 masks...\n",
"<class 'int'>\n",
"β SAM2 models initialized successfully\n",
"<class 'int'>\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /pytorch/aten/src/ATen/native/TensorShape.cpp:4314.)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"final text_encoder_type: bert-base-uncased\n",
"β GroundingDINO model initialized successfully\n",
"Start detecting objects at time 05:08:58.178592\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Detecting objects: 0%| | 0/3 [00:00<?, ?it/s]FutureWarning: The `device` argument is deprecated and will be removed in v5 of Transformers.\n",
"UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.\n",
"UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
"FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
"Detecting objects: 100%|ββββββββββ| 3/3 [00:01<00:00, 2.82it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Finished detecting objects at time 05:08:59.250419\n",
"Loading inference state at time 05:08:59.544425\n",
"Number of frames: 3\n",
"None\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Processing frames: 100%|ββββββββββ| 3/3 [00:00<00:00, 11.77it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Annotated frames: []\n",
"Find the most dense prompt at time 05:09:01.413703\n",
"Most dense frame: 0\n",
"\n",
"\n",
"Start propagating objects at time 05:09:01.416367\n",
"Pass count: 0\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"propagate in video: 100%|ββββββββββ| 3/3 [00:00<00:00, 20.20it/s]\n",
"propagate in video: 0it [00:00, ?it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Most dense frame: 1\n",
"\n",
"\n",
"Pass count: 1\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"propagate in video: 100%|ββββββββββ| 3/3 [00:00<00:00, 19.25it/s]\n",
"propagate in video: 0it [00:00, ?it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Most dense frame: 2\n",
"\n",
"\n",
"Pass count: 2\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"propagate in video: 100%|ββββββββββ| 3/3 [00:00<00:00, 25.92it/s]\n",
"propagate in video: 0it [00:00, ?it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Most dense frame: -1\n",
"\n",
"\n",
"\n",
"Results:\n",
"Summary: {'num_objects_detected': 4, 'num_unary_predictions': 10, 'num_binary_predictions': 3, 'top_categories': [('frisbee', 0.9989640712738037), ('dog', 0.957672655582428), ('dog', 0.957672655582428)], 'top_actions': [('running', 0.8483631610870361), ('running', 0.832377016544342), ('running', 0.8178836107254028)], 'top_relations': [('chasing', 0.9616015553474426), ('chasing', 0.9478002786636353), ('chasing', 0.6380977630615234)]}\n"
]
}
],
"source": [
"try:\n",
" results = vine_pipeline(\n",
" demo_video_path,\n",
" categorical_keywords=categorical_keywords,\n",
" unary_keywords=unary_keywords,\n",
" binary_keywords=binary_keywords,\n",
" object_pairs=object_pairs,\n",
" segmentation_method='grounding_dino_sam2',\n",
" return_top_k=3,\n",
" include_visualizations=False,\n",
" debug_visualizations=False,\n",
" )\n",
" \n",
" print(\"\\nResults:\")\n",
" print(f\"Summary: {results['summary']}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Note: Full execution requires segmentation models to be properly set up.\")\n",
" print(f\"Error: {e}\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "414ede9b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Summary: {'num_objects_detected': 4, 'num_unary_predictions': 10, 'num_binary_predictions': 3, 'top_categories': [('frisbee', 0.9989640712738037), ('dog', 0.957672655582428), ('dog', 0.957672655582428)], 'top_actions': [('running', 0.8483631610870361), ('running', 0.832377016544342), ('running', 0.8178836107254028)], 'top_relations': [('chasing', 0.9616015553474426), ('chasing', 0.9478002786636353), ('chasing', 0.6380977630615234)]}\n"
]
}
],
"source": [
"print(f\"Summary: {results['summary']}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "laser_env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|