Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,503 Bytes
888f9e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
"""
Test script for VINE model loaded from HuggingFace Hub
"""
import os
import sys
from pathlib import Path
import torch
os.environ['OPENAI_API_KEY'] = "dummy-key"
# Add src to path
sys.path.insert(0, str(Path(__file__).parent / "src"))
# Determine device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
print("=" * 80)
print("Testing VINE Model from video-fm/vine")
print("=" * 80)
# Load VINE from HuggingFace
print("\n1. Loading VINE model from HuggingFace Hub...")
from transformers import AutoModel, AutoConfig
# Load config and set device properly
config = AutoConfig.from_pretrained('video-fm/vine', trust_remote_code=True)
config._device = device # Override the device setting
# Load model with config
model = AutoModel.from_pretrained('video-fm/vine', config=config, trust_remote_code=True)
print("β Model loaded successfully")
# Verify checkpoint files
print("\n2. Verifying checkpoint files...")
checkpoint_dir = Path(__file__).parent / "checkpoints"
checkpoints = {
"SAM2 config": checkpoint_dir / "sam2_hiera_t.yaml",
"SAM2 checkpoint": checkpoint_dir / "sam2_hiera_tiny.pt",
"GroundingDINO config": checkpoint_dir / "GroundingDINO_SwinT_OGC.py",
"GroundingDINO checkpoint": checkpoint_dir / "groundingdino_swint_ogc.pth",
}
all_exist = True
for name, path in checkpoints.items():
if path.exists():
size_mb = path.stat().st_size / (1024 * 1024)
print(f"β {name}: {path.name} ({size_mb:.1f} MB)")
else:
print(f"β {name}: NOT FOUND at {path}")
all_exist = False
# Create pipeline
print("\n3. Creating VINE pipeline...")
from vine_hf import VinePipeline
pipeline = VinePipeline(
model=model,
tokenizer=None,
sam_config_path=str(checkpoints["SAM2 config"]),
sam_checkpoint_path=str(checkpoints["SAM2 checkpoint"]),
gd_config_path=str(checkpoints["GroundingDINO config"]),
gd_checkpoint_path=str(checkpoints["GroundingDINO checkpoint"]),
device=device,
trust_remote_code=True
)
print("β Pipeline created successfully")
print("\n" + "=" * 80)
print("β
VINE Setup Complete and Working!")
print("=" * 80)
print("\nYou can now use the model for video understanding:")
print("""
from transformers import AutoModel
from vine_hf import VinePipeline
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
pipeline = VinePipeline(model=model, ...)
results = pipeline('video.mp4', categorical_keywords=['person', 'dog'], ...)
""")
|