File size: 8,754 Bytes
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
Script to push VINE model to video-fm organization on HuggingFace Hub

This script pushes the VINE architecture (config, model, pipeline) and model weights
to the video-fm organization for easy sharing and distribution.
"""

import os
import sys
import torch
import argparse
from pathlib import Path
from huggingface_hub import HfApi, login
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModel
from safetensors.torch import save_file

# Add the parent directory to path to enable vine_hf imports
current_dir = Path(__file__).parent
parent_dir = current_dir.parent
sys.path.insert(0, str(parent_dir))

os.environ['OPENAI_API_KEY'] = "dummy-key"

# Import from vine_hf package
from vine_hf import VineConfig, VineModel, VinePipeline


def push_vine_to_video_fm(
    source_repo_or_path: str = "KevinX-Penn28/testing",
    target_repo: str = "video-fm/vine",
    model_name: str = "openai/clip-vit-base-patch32",
    commit_message: str = "Upload VINE model architecture and weights",
    private: bool = False,
    use_local_weights: bool = False,
):
    """
    Push VINE model to video-fm organization on HuggingFace Hub.

    Args:
        source_repo_or_path: Source HF repo or local path with model weights
        target_repo: Target repository (e.g., "video-fm/vine")
        model_name: CLIP model backbone name
        commit_message: Commit message for the push
        private: Whether to create a private repository
        use_local_weights: If True, source_repo_or_path is a local file path
    """

    print("=" * 70)
    print("πŸš€ Pushing VINE Model to HuggingFace Hub - video-fm Organization")
    print("=" * 70)

    # 1. Create configuration
    print(f"\nπŸ“ Creating configuration with backbone: {model_name}")
    config = VineConfig(
        model_name=model_name,
        segmentation_method="grounding_dino_sam2",
        use_hf_repo=not use_local_weights,
        model_repo=source_repo_or_path if not use_local_weights else None,
        local_dir=str(Path(source_repo_or_path).parent) if use_local_weights else None,
        local_filename=Path(source_repo_or_path).name if use_local_weights else None,
    )

    # 2. Initialize model (will automatically load weights from source)
    print(f"\nπŸ”§ Initializing model and loading weights from: {source_repo_or_path}")
    model = VineModel(config)
    print("βœ“ Model initialized with weights loaded")

    # 3. Register for auto classes
    print("\nπŸ“‹ Registering for auto classes...")
    config.register_for_auto_class()
    model.register_for_auto_class("AutoModel")
    print("βœ“ Registered for AutoModel and AutoConfig")

    # 4. Register pipeline
    print("\nπŸ”Œ Registering custom pipeline...")
    try:
        PIPELINE_REGISTRY.register_pipeline(
            "vine-video-understanding",
            pipeline_class=VinePipeline,
            pt_model=VineModel,
            type="multimodal",
        )
        print("βœ“ Pipeline registered")
    except Exception as e:
        print(f"⚠ Pipeline registration: {e} (may already be registered)")

    try:
        # 5. Push configuration to hub
        print(f"\n⬆️  Pushing configuration to {target_repo}...")
        config.push_to_hub(
            target_repo,
            commit_message=f"{commit_message} - config",
            private=private
        )
        print("βœ“ Configuration pushed successfully")

        # 6. Push model to hub
        print(f"\n⬆️  Pushing model to {target_repo}...")
        model.push_to_hub(
            target_repo,
            commit_message=f"{commit_message} - model and weights",
            private=private
        )
        print("βœ“ Model and weights pushed successfully")

        # 7. Copy additional necessary files to the repo
        print(f"\nπŸ“¦ Uploading additional architecture files...")
        api = HfApi()

        # Upload flattening.py and vis_utils.py as they're imported by the model
        current_dir = Path(__file__).parent
        additional_files = [
            "flattening.py",
            "vis_utils.py",
        ]

        for filename in additional_files:
            file_path = current_dir / filename
            if file_path.exists():
                api.upload_file(
                    path_or_fileobj=str(file_path),
                    path_in_repo=filename,
                    repo_id=target_repo,
                    commit_message=f"Add {filename}",
                )
                print(f"βœ“ Uploaded {filename}")
            else:
                print(f"⚠ Warning: {filename} not found at {file_path}")

        # 8. Upload README if it exists
        readme_path = current_dir / "README.md"
        if readme_path.exists():
            api.upload_file(
                path_or_fileobj=str(readme_path),
                path_in_repo="README.md",
                repo_id=target_repo,
                commit_message="Add README documentation",
            )
            print("βœ“ Uploaded README.md")

        print("\n" + "=" * 70)
        print("πŸŽ‰ Successfully pushed VINE model to HuggingFace Hub!")
        print("=" * 70)
        print(f"\nπŸ“ Model URL: https://huggingface.co/{target_repo}")
        print(f"\nπŸ“š To use your model:")
        print(f"""
```python
from transformers import AutoModel, AutoConfig
from vine_hf import VineConfig, VineModel, VinePipeline

# Option 1: Load with AutoModel
model = AutoModel.from_pretrained('{target_repo}', trust_remote_code=True)

# Option 2: Load with VineModel directly
config = VineConfig.from_pretrained('{target_repo}')
model = VineModel.from_pretrained('{target_repo}')

# Option 3: Use with pipeline
from transformers import pipeline

vine_pipeline = pipeline(
    'vine-video-understanding',
    model='{target_repo}',
    trust_remote_code=True
)

results = vine_pipeline(
    'path/to/video.mp4',
    categorical_keywords=['human', 'dog', 'frisbee'],
    unary_keywords=['running', 'jumping'],
    binary_keywords=['chasing', 'behind']
)
```
""")

        return True

    except Exception as e:
        print(f"\n❌ Error pushing to hub: {e}")
        import traceback
        traceback.print_exc()
        print("\nPlease check:")
        print("  - HuggingFace credentials (run: huggingface-cli login)")
        print("  - Repository permissions for video-fm organization")
        print("  - Network connectivity")
        return False


def main():
    parser = argparse.ArgumentParser(
        description="Push VINE model to video-fm organization on HuggingFace Hub"
    )

    parser.add_argument(
        "--source",
        type=str,
        default="KevinX-Penn28/testing",
        help="Source HF repo or local path with model weights (default: KevinX-Penn28/testing)"
    )

    parser.add_argument(
        "--target",
        type=str,
        default="video-fm/vine",
        help="Target repository in video-fm org (default: video-fm/vine)"
    )

    parser.add_argument(
        "--model-name",
        type=str,
        default="openai/clip-vit-base-patch32",
        help="CLIP model backbone name"
    )

    parser.add_argument(
        "--message",
        type=str,
        default="Upload VINE model architecture and weights",
        help="Commit message"
    )

    parser.add_argument(
        "--private",
        action="store_true",
        help="Create private repository"
    )

    parser.add_argument(
        "--local-weights",
        action="store_true",
        help="Use local weights file instead of HF repo"
    )

    args = parser.parse_args()

    # Check login status
    try:
        api = HfApi()
        user_info = api.whoami()
        print(f"βœ“ Logged in as: {user_info['name']}")

        # Check if user has access to video-fm org
        orgs = [org['name'] for org in user_info.get('orgs', [])]
        if 'video-fm' in orgs:
            print(f"βœ“ Confirmed access to video-fm organization")
        else:
            print(f"⚠ Warning: You may not have access to video-fm organization")
            print(f"  Your organizations: {orgs}")
    except Exception as e:
        print(f"❌ Not logged in to HuggingFace. Please run: huggingface-cli login")
        print(f"   Or use: python -c 'from huggingface_hub import login; login()'")
        sys.exit(1)

    # Push model
    success = push_vine_to_video_fm(
        source_repo_or_path=args.source,
        target_repo=args.target,
        model_name=args.model_name,
        commit_message=args.message,
        private=args.private,
        use_local_weights=args.local_weights,
    )

    if success:
        print("\nβœ… Successfully completed!")
        sys.exit(0)
    else:
        print("\n❌ Push failed!")
        sys.exit(1)


if __name__ == "__main__":
    main()