Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,951 Bytes
f9a6349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# VINE HuggingFace Interface - Complete Overview
This directory contains a complete HuggingFace-compatible interface for the VINE (Video Understanding with Natural Language) model. The interface allows you to easily use, share, and deploy your VINE model through the HuggingFace ecosystem.
## π Directory Structure
```
vine_hf/
βββ __init__.py # Package initialization and exports
βββ vine_config.py # VineConfig class (PretrainedConfig)
βββ vine_model.py # VineModel class (PreTrainedModel)
βββ vine_pipeline.py # VinePipeline class (Pipeline)
βββ example_usage.py # Comprehensive usage examples
βββ convert_inference.py # Migration guide from inference.py
βββ push_to_hub.py # Script to push model to HF Hub
βββ setup.py # Package setup configuration
βββ README.md # Detailed documentation
βββ OVERVIEW.md # This file
```
## ποΈ Architecture Components
### 1. VineConfig (`vine_config.py`)
- Inherits from `PretrainedConfig`
- Configures model parameters, segmentation methods, and processing options
- Compatible with HuggingFace configuration system
### 2. VineModel (`vine_model.py`)
- Inherits from `PreTrainedModel`
- Implements the core VINE model with three CLIP backbones
- Supports categorical, unary, and binary predictions
- Provides both `forward()` and `predict()` methods
### 3. VinePipeline (`vine_pipeline.py`)
- Inherits from `Pipeline`
- Handles end-to-end video processing workflow
- Integrates segmentation (SAM2, Grounding DINO + SAM2)
- Provides user-friendly interface for video understanding
## π Key Features
β
**Full HuggingFace Compatibility**
- Compatible with `transformers` library
- Supports `AutoModel` and `pipeline` interfaces
- Can be pushed to and loaded from HuggingFace Hub
β
**Flexible Segmentation**
- Support for SAM2 automatic segmentation
- Support for Grounding DINO + SAM2 text-guided segmentation
- Configurable thresholds and parameters
β
**Multi-Modal Understanding**
- Categorical classification (object types)
- Unary predicates (single object actions)
- Binary relations (object-object relationships)
β
**Easy Integration**
- Simple pipeline interface for end users
- Direct model access for researchers
- Comprehensive configuration options
## π Usage Examples
### Quick Start with Pipeline
```python
from transformers import pipeline
from vine_hf import VineModel, VinePipeline
# Create pipeline
vine_pipeline = pipeline(
"vine-video-understanding",
model="your-username/vine-model",
trust_remote_code=True
)
# Process video
results = vine_pipeline(
"video.mp4",
categorical_keywords=['human', 'dog', 'frisbee'],
unary_keywords=['running', 'jumping'],
binary_keywords=['chasing', 'behind']
)
```
### Direct Model Usage
```python
from vine_hf import VineConfig, VineModel
config = VineConfig(segmentation_method="grounding_dino_sam2")
model = VineModel(config)
results = model.predict(
video_frames=video_tensor,
masks=masks_dict,
bboxes=bboxes_dict,
categorical_keywords=['human', 'dog'],
unary_keywords=['running', 'sitting'],
binary_keywords=['chasing', 'near']
)
```
## π§ Migration from Original Code
The `convert_inference.py` script shows how to migrate from the original `inference.py` workflow:
**Original Approach:**
- Manual model loading and configuration
- Direct handling of segmentation pipeline
- Custom result processing
- Complex setup requirements
**New HuggingFace Interface:**
- Standardized model configuration
- Automatic preprocessing/postprocessing
- Simple pipeline interface
- Easy sharing via HuggingFace Hub
## π€ Sharing Your Model
Use the `push_to_hub.py` script to share your trained model:
```bash
python vine_hf/push_to_hub.py \
--weights path/to/your/model.pth \
--repo your-username/vine-model \
--login
```
## π οΈ Installation & Setup
1. **Install Dependencies:**
```bash
pip install transformers torch torchvision opencv-python pillow numpy
```
2. **Install Segmentation Models (Optional):**
- SAM2: https://github.com/facebookresearch/sam2
- Grounding DINO: https://github.com/IDEA-Research/GroundingDINO
3. **Install VINE HF Interface:**
```bash
cd vine_hf
pip install -e .
```
## π― Configuration Options
The `VineConfig` class supports extensive configuration:
- **Model Settings:** CLIP backbone, hidden dimensions
- **Segmentation:** Method, thresholds, target FPS
- **Processing:** Alpha values, top-k results, video length limits
- **Performance:** Multi-class mode, output format options
## π Output Format
The interface returns structured predictions:
```python
{
"categorical_predictions": {obj_id: [(prob, category), ...]},
"unary_predictions": {(frame, obj): [(prob, action), ...]},
"binary_predictions": {(frame, pair): [(prob, relation), ...]},
"confidence_scores": {"categorical": float, "unary": float, "binary": float},
"summary": {
"num_objects_detected": int,
"top_categories": [(category, prob), ...],
"top_actions": [(action, prob), ...],
"top_relations": [(relation, prob), ...]
}
}
```
## π Testing & Validation
Run the example scripts to test your setup:
```bash
# Test basic functionality
python vine_hf/example_usage.py
# Test migration from original code
python vine_hf/convert_inference.py
```
## π€ Contributing
To contribute or customize:
1. **Modify Configuration:** Edit `vine_config.py` for new parameters
2. **Extend Model:** Add functionality to `vine_model.py`
3. **Enhance Pipeline:** Improve preprocessing/postprocessing in `vine_pipeline.py`
4. **Add Features:** Create additional utility scripts
## π Next Steps
1. **Load Your Weights:** Use your trained VINE model weights
2. **Test Segmentation:** Set up Grounding DINO and SAM2 models
3. **Validate Results:** Compare with original inference.py output
4. **Share Model:** Push to HuggingFace Hub for community use
5. **Deploy:** Use in applications, demos, or research projects
## π Troubleshooting
**Common Issues:**
- **Import Errors:** Check PYTHONPATH and package installation
- **Segmentation Failures:** Verify Grounding DINO/SAM2 setup
- **Weight Loading:** Adjust weight loading logic in `convert_inference.py`
- **CUDA Issues:** Check GPU availability and PyTorch installation
**Support:**
- Check the README.md for detailed documentation
- Review example_usage.py for working code examples
- Examine convert_inference.py for migration guidance
---
This HuggingFace interface makes VINE accessible to the broader ML community while maintaining all the powerful video understanding capabilities of the original model. The standardized interface enables easy sharing, deployment, and integration with existing HuggingFace workflows.
|