File size: 9,432 Bytes
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888f9e4
 
f9a6349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from pathlib import Path
from collections.abc import Mapping, Sequence
from functools import lru_cache
import inspect
import shutil
import tempfile
import os
import sys

import spaces  # <-- ZeroGPU integration
import gradio as gr
import torch
from transformers import pipeline  # not strictly necessary, but fine


# -----------------------------
# Environment / diagnostics
# -----------------------------
os.environ["GRADIO_TEMP_DIR"] = str(Path(__file__).parent / "gradio_temp")
os.environ["OPENAI_API_KEY"] = "test"
os.environ["OMP_NUM_THREADS"] = "4"

print("All imports finished")
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
print(f"cuDNN version: {torch.backends.cudnn.version()}")
print(f"Number of GPUs: {torch.cuda.device_count()}")

if torch.cuda.is_available():
    for i in range(torch.cuda.device_count()):
        print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
        print(
            f"  Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB"
        )

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
os.environ["TORCH_DTYPE"] = "float32"
torch.set_default_dtype(torch.float32)

current_dir = Path(__file__).resolve().parent
# For Spaces, assume checkpoints live alongside app.py or in a "checkpoints" subdir.
# If you keep them next to app.py locally, this still works.
# NOTE: SAM2 config uses Hydra, so we use just the filename (it searches in sam2/configs/)
sam_config_path = "sam2_hiera_t.yaml"  # Hydra will find this in sam2/configs/
sam_checkpoint_path = str(current_dir / "sam2_hiera_tiny.pt")
gd_config_path = str(current_dir / "GroundingDINO_SwinT_OGC.py")
gd_checkpoint_path = str(current_dir / "groundingdino_swint_ogc.pth")
visualization_dir = str(current_dir / "outputs")
print(
    f"Setting up paths: {sam_config_path}, {sam_checkpoint_path}, {gd_config_path}, {gd_checkpoint_path}"
)


@lru_cache(maxsize=1)
def _load_vine_pipeline():
    """
    Lazy-load and cache the Vine pipeline so we don't re-download/rebuild it on every request.
    """
    from vine_hf import VineConfig, VineModel, VinePipeline

    config = VineConfig(
        segmentation_method="grounding_dino_sam2",
        model_name="openai/clip-vit-base-patch32",
        use_hf_repo=True,
        model_repo="KevinX-Penn28/testing",
        box_threshold=0.35,
        text_threshold=0.25,
        target_fps=1,  # default 1 FPS
        topk_cate=5,
        white_alpha=0.3,
        visualization_dir=visualization_dir,
        visualize=True,
        debug_visualizations=False,
        device="cuda",
        categorical_pool="max",
    )
    model = VineModel(config)
    return VinePipeline(
        model=model,
        tokenizer=None,
        sam_config_path=sam_config_path,
        sam_checkpoint_path=sam_checkpoint_path,
        gd_config_path=gd_config_path,
        gd_checkpoint_path=gd_checkpoint_path,
        device="cuda",
        trust_remote_code=True,
    )


@spaces.GPU(duration=300)  # Up to ~5 minutes of H200 ZeroGPU time per call
def process_video(
    video_file,
    categorical_keywords,
    unary_keywords,
    binary_keywords,
    object_pairs,
    output_fps,
    box_threshold,
    text_threshold,
):
    vine_pipe = _load_vine_pipeline()

    # Normalize incoming video input to a file path
    if isinstance(video_file, dict):
        video_file = (
            video_file.get("name")
            or video_file.get("filepath")
            or video_file.get("data")
        )
    if not isinstance(video_file, (str, Path)):
        raise ValueError(f"Unsupported video input type: {type(video_file)}")

    categorical_keywords = (
        [kw.strip() for kw in categorical_keywords.split(",")]
        if categorical_keywords
        else []
    )
    unary_keywords = (
        [kw.strip() for kw in unary_keywords.split(",")] if unary_keywords else []
    )
    binary_keywords = (
        [kw.strip() for kw in binary_keywords.split(",")] if binary_keywords else []
    )
    object_pairs = (
        [tuple(map(int, pair.split("-"))) for pair in object_pairs.split(",")]
        if object_pairs
        else []
    )

    results = vine_pipe(
        inputs=video_file,
        categorical_keywords=categorical_keywords,
        unary_keywords=unary_keywords,
        binary_keywords=binary_keywords,
        object_pairs=object_pairs,
        segmentation_method="grounding_dino_sam2",
        return_top_k=5,
        include_visualizations=True,
        debug_visualizations=False,
        device="cuda",
        box_threshold=box_threshold,
        text_threshold=text_threshold,
        target_fps=output_fps,
    )

    vine_pipe.box_threshold = box_threshold
    vine_pipe.text_threshold = text_threshold
    vine_pipe.target_fps = output_fps

    if isinstance(results, Mapping):
        results_dict = results
    elif isinstance(results, Sequence) and results and isinstance(results[0], Mapping):
        results_dict = results[0]
    else:
        results_dict = {}

    visualizations = results_dict.get("visualizations") or {}
    vine = visualizations.get("vine") or {}
    all_vis = vine.get("all") or {}
    result_video_path = all_vis.get("video_path")
    if not result_video_path:
        candidates = sorted(
            Path(visualization_dir).rglob("*.mp4"),
            key=lambda p: p.stat().st_mtime,
            reverse=True,
        )
        result_video_path = str(candidates[0]) if candidates else None
    summary = results_dict.get("summary") or {}

    if result_video_path and os.path.exists(result_video_path):
        gradio_tmp = Path(
            os.environ.get("GRADIO_TEMP_DIR", tempfile.gettempdir())
        ) / "vine_outputs"
        gradio_tmp.mkdir(parents=True, exist_ok=True)
        dest_path = gradio_tmp / Path(result_video_path).name
        try:
            shutil.copyfile(result_video_path, dest_path)
            video_path_for_ui = str(dest_path)
        except Exception as e:
            print(f"Warning: failed to copy video to Gradio temp dir: {e}")
            video_path_for_ui = str(result_video_path)
    else:
        video_path_for_ui = None
        print(
            "Warning: annotated video not found or empty; check visualization settings."
        )

    return video_path_for_ui, summary


def _video_component(label: str, *, is_output: bool = False):
    """
    Build a Gradio Video component that is compatible with older Gradio versions
    (no `type`/`sources`/`format` kwargs) and newer ones when available.
    """
    kwargs = {"label": label}
    sig = inspect.signature(gr.Video.__init__)

    # Only set format for OUTPUT components
    if is_output and "format" in sig.parameters:
        kwargs["format"] = "mp4"

    if not is_output:
        if "type" in sig.parameters:
            kwargs["type"] = "filepath"
        if "sources" in sig.parameters:
            kwargs["sources"] = ["upload"]

    if is_output and "autoplay" in sig.parameters:
        kwargs["autoplay"] = True

    return gr.Video(**kwargs)


def _create_blocks():
    """
    Build a Blocks context that works across Gradio versions.
    """
    blocks_kwargs = {"title": "VINE Demo"}
    soft_theme = None

    if hasattr(gr, "themes") and hasattr(gr.themes, "Soft"):
        try:
            soft_theme = gr.themes.Soft()
        except Exception:
            soft_theme = None

    if "theme" in inspect.signature(gr.Blocks).parameters and soft_theme is not None:
        blocks_kwargs["theme"] = soft_theme

    return gr.Blocks(**blocks_kwargs)


# Create Gradio interface
with _create_blocks() as demo:
    video_input = _video_component("Upload Video", is_output=False)
    categorical_input = gr.Textbox(
        label="Categorical Keywords (comma-separated)",
        value="person, car, tree, background",
    )
    unary_input = gr.Textbox(
        label="Unary Keywords (comma-separated)", value="walking, running, standing"
    )
    binary_input = gr.Textbox(
        label="Binary Keywords (comma-separated)",
        placeholder="e.g., chasing, carrying",
    )
    pairs_input = gr.Textbox(
        label="Object Pairs (comma-separated indices)",
        placeholder="e.g., 0-1,0-2 for pairs of objects",
    )
    fps_input = gr.Number(
        label="Output FPS (affects processing speed)", value=1  # default 1 FPS
    )

    with gr.Accordion("Advanced Settings", open=False):
        box_threshold_input = gr.Slider(
            label="Box Threshold", minimum=0.1, maximum=0.9, value=0.35, step=0.05
        )
        text_threshold_input = gr.Slider(
            label="Text Threshold", minimum=0.1, maximum=0.9, value=0.25, step=0.05
        )

    submit_btn = gr.Button("Process Video", variant="primary")

    video_output = _video_component("Output Video with Annotations", is_output=True)
    json_output = gr.JSON(label="Summary of Detected Events")

    submit_btn.click(
        fn=process_video,
        inputs=[
            video_input,
            categorical_input,
            unary_input,
            binary_input,
            pairs_input,
            fps_input,
            box_threshold_input,
            text_threshold_input,
        ],
        outputs=[video_output, json_output],
    )

if __name__ == "__main__":
    print("Got to main")
    demo.launch(share=True, debug=True)