Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,432 Bytes
f9a6349 888f9e4 f9a6349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from pathlib import Path
from collections.abc import Mapping, Sequence
from functools import lru_cache
import inspect
import shutil
import tempfile
import os
import sys
import spaces # <-- ZeroGPU integration
import gradio as gr
import torch
from transformers import pipeline # not strictly necessary, but fine
# -----------------------------
# Environment / diagnostics
# -----------------------------
os.environ["GRADIO_TEMP_DIR"] = str(Path(__file__).parent / "gradio_temp")
os.environ["OPENAI_API_KEY"] = "test"
os.environ["OMP_NUM_THREADS"] = "4"
print("All imports finished")
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
print(f"cuDNN version: {torch.backends.cudnn.version()}")
print(f"Number of GPUs: {torch.cuda.device_count()}")
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
print(
f" Memory: {torch.cuda.get_device_properties(i).total_memory / 1e9:.2f} GB"
)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
os.environ["TORCH_DTYPE"] = "float32"
torch.set_default_dtype(torch.float32)
current_dir = Path(__file__).resolve().parent
# For Spaces, assume checkpoints live alongside app.py or in a "checkpoints" subdir.
# If you keep them next to app.py locally, this still works.
# NOTE: SAM2 config uses Hydra, so we use just the filename (it searches in sam2/configs/)
sam_config_path = "sam2_hiera_t.yaml" # Hydra will find this in sam2/configs/
sam_checkpoint_path = str(current_dir / "sam2_hiera_tiny.pt")
gd_config_path = str(current_dir / "GroundingDINO_SwinT_OGC.py")
gd_checkpoint_path = str(current_dir / "groundingdino_swint_ogc.pth")
visualization_dir = str(current_dir / "outputs")
print(
f"Setting up paths: {sam_config_path}, {sam_checkpoint_path}, {gd_config_path}, {gd_checkpoint_path}"
)
@lru_cache(maxsize=1)
def _load_vine_pipeline():
"""
Lazy-load and cache the Vine pipeline so we don't re-download/rebuild it on every request.
"""
from vine_hf import VineConfig, VineModel, VinePipeline
config = VineConfig(
segmentation_method="grounding_dino_sam2",
model_name="openai/clip-vit-base-patch32",
use_hf_repo=True,
model_repo="KevinX-Penn28/testing",
box_threshold=0.35,
text_threshold=0.25,
target_fps=1, # default 1 FPS
topk_cate=5,
white_alpha=0.3,
visualization_dir=visualization_dir,
visualize=True,
debug_visualizations=False,
device="cuda",
categorical_pool="max",
)
model = VineModel(config)
return VinePipeline(
model=model,
tokenizer=None,
sam_config_path=sam_config_path,
sam_checkpoint_path=sam_checkpoint_path,
gd_config_path=gd_config_path,
gd_checkpoint_path=gd_checkpoint_path,
device="cuda",
trust_remote_code=True,
)
@spaces.GPU(duration=300) # Up to ~5 minutes of H200 ZeroGPU time per call
def process_video(
video_file,
categorical_keywords,
unary_keywords,
binary_keywords,
object_pairs,
output_fps,
box_threshold,
text_threshold,
):
vine_pipe = _load_vine_pipeline()
# Normalize incoming video input to a file path
if isinstance(video_file, dict):
video_file = (
video_file.get("name")
or video_file.get("filepath")
or video_file.get("data")
)
if not isinstance(video_file, (str, Path)):
raise ValueError(f"Unsupported video input type: {type(video_file)}")
categorical_keywords = (
[kw.strip() for kw in categorical_keywords.split(",")]
if categorical_keywords
else []
)
unary_keywords = (
[kw.strip() for kw in unary_keywords.split(",")] if unary_keywords else []
)
binary_keywords = (
[kw.strip() for kw in binary_keywords.split(",")] if binary_keywords else []
)
object_pairs = (
[tuple(map(int, pair.split("-"))) for pair in object_pairs.split(",")]
if object_pairs
else []
)
results = vine_pipe(
inputs=video_file,
categorical_keywords=categorical_keywords,
unary_keywords=unary_keywords,
binary_keywords=binary_keywords,
object_pairs=object_pairs,
segmentation_method="grounding_dino_sam2",
return_top_k=5,
include_visualizations=True,
debug_visualizations=False,
device="cuda",
box_threshold=box_threshold,
text_threshold=text_threshold,
target_fps=output_fps,
)
vine_pipe.box_threshold = box_threshold
vine_pipe.text_threshold = text_threshold
vine_pipe.target_fps = output_fps
if isinstance(results, Mapping):
results_dict = results
elif isinstance(results, Sequence) and results and isinstance(results[0], Mapping):
results_dict = results[0]
else:
results_dict = {}
visualizations = results_dict.get("visualizations") or {}
vine = visualizations.get("vine") or {}
all_vis = vine.get("all") or {}
result_video_path = all_vis.get("video_path")
if not result_video_path:
candidates = sorted(
Path(visualization_dir).rglob("*.mp4"),
key=lambda p: p.stat().st_mtime,
reverse=True,
)
result_video_path = str(candidates[0]) if candidates else None
summary = results_dict.get("summary") or {}
if result_video_path and os.path.exists(result_video_path):
gradio_tmp = Path(
os.environ.get("GRADIO_TEMP_DIR", tempfile.gettempdir())
) / "vine_outputs"
gradio_tmp.mkdir(parents=True, exist_ok=True)
dest_path = gradio_tmp / Path(result_video_path).name
try:
shutil.copyfile(result_video_path, dest_path)
video_path_for_ui = str(dest_path)
except Exception as e:
print(f"Warning: failed to copy video to Gradio temp dir: {e}")
video_path_for_ui = str(result_video_path)
else:
video_path_for_ui = None
print(
"Warning: annotated video not found or empty; check visualization settings."
)
return video_path_for_ui, summary
def _video_component(label: str, *, is_output: bool = False):
"""
Build a Gradio Video component that is compatible with older Gradio versions
(no `type`/`sources`/`format` kwargs) and newer ones when available.
"""
kwargs = {"label": label}
sig = inspect.signature(gr.Video.__init__)
# Only set format for OUTPUT components
if is_output and "format" in sig.parameters:
kwargs["format"] = "mp4"
if not is_output:
if "type" in sig.parameters:
kwargs["type"] = "filepath"
if "sources" in sig.parameters:
kwargs["sources"] = ["upload"]
if is_output and "autoplay" in sig.parameters:
kwargs["autoplay"] = True
return gr.Video(**kwargs)
def _create_blocks():
"""
Build a Blocks context that works across Gradio versions.
"""
blocks_kwargs = {"title": "VINE Demo"}
soft_theme = None
if hasattr(gr, "themes") and hasattr(gr.themes, "Soft"):
try:
soft_theme = gr.themes.Soft()
except Exception:
soft_theme = None
if "theme" in inspect.signature(gr.Blocks).parameters and soft_theme is not None:
blocks_kwargs["theme"] = soft_theme
return gr.Blocks(**blocks_kwargs)
# Create Gradio interface
with _create_blocks() as demo:
video_input = _video_component("Upload Video", is_output=False)
categorical_input = gr.Textbox(
label="Categorical Keywords (comma-separated)",
value="person, car, tree, background",
)
unary_input = gr.Textbox(
label="Unary Keywords (comma-separated)", value="walking, running, standing"
)
binary_input = gr.Textbox(
label="Binary Keywords (comma-separated)",
placeholder="e.g., chasing, carrying",
)
pairs_input = gr.Textbox(
label="Object Pairs (comma-separated indices)",
placeholder="e.g., 0-1,0-2 for pairs of objects",
)
fps_input = gr.Number(
label="Output FPS (affects processing speed)", value=1 # default 1 FPS
)
with gr.Accordion("Advanced Settings", open=False):
box_threshold_input = gr.Slider(
label="Box Threshold", minimum=0.1, maximum=0.9, value=0.35, step=0.05
)
text_threshold_input = gr.Slider(
label="Text Threshold", minimum=0.1, maximum=0.9, value=0.25, step=0.05
)
submit_btn = gr.Button("Process Video", variant="primary")
video_output = _video_component("Output Video with Annotations", is_output=True)
json_output = gr.JSON(label="Summary of Detected Events")
submit_btn.click(
fn=process_video,
inputs=[
video_input,
categorical_input,
unary_input,
binary_input,
pairs_input,
fps_input,
box_threshold_input,
text_threshold_input,
],
outputs=[video_output, json_output],
)
if __name__ == "__main__":
print("Got to main")
demo.launch(share=True, debug=True)
|