Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,562 Bytes
888f9e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
from flax import config
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from transformers import PreTrainedModel, AutoTokenizer, AutoModel, AutoProcessor
from typing import Dict, List, Tuple, Optional, Any, Union
import numpy as np
import os
import cv2
from collections import defaultdict
import builtins
import sys
from laser.models import llava_clip_model_v3
sys.modules["llava_clip_model_v3"] = llava_clip_model_v3
from safetensors.torch import load_file
import inspect
from transformers.models.clip import modeling_clip
import transformers
from huggingface_hub import snapshot_download
from .vine_config import VineConfig
from laser.models.model_utils import (
extract_single_object,
extract_object_subject,
crop_image_contain_bboxes,
segment_list
)
from .flattening import (
extract_valid_object_pairs,
flatten_segments_for_batch,
)
from .vis_utils import save_mask_one_image
class VineModel(PreTrainedModel):
"""
VINE (Video Understanding with Natural Language) Model
This model processes videos along with categorical, unary, and binary keywords
to return probability distributions over those keywords for detected objects
and their relationships in the video.
"""
config_class = VineConfig
def __init__(self, config: VineConfig):
super().__init__(config)
self.config = config
self.visualize = getattr(config, "visualize", False)
self.visualization_dir = getattr(config, "visualization_dir", None)
self.debug_visualizations = getattr(config, "debug_visualizations", False)
self._device = getattr(config, "_device")
# Initialize CLIP components
self.clip_tokenizer = AutoTokenizer.from_pretrained(config.model_name)
if self.clip_tokenizer.pad_token is None:
self.clip_tokenizer.pad_token = (
self.clip_tokenizer.unk_token
if self.clip_tokenizer.unk_token
else self.clip_tokenizer.eos_token
)
self.clip_processor = AutoProcessor.from_pretrained(config.model_name)
self.clip_cate_model = AutoModel.from_pretrained(config.model_name)
self.clip_unary_model = AutoModel.from_pretrained(config.model_name)
self.clip_binary_model = AutoModel.from_pretrained(config.model_name)
# Then try to load pretrained VINE weights if specified
if config.use_hf_repo:
self._load_huggingface_vine_weights(config.model_repo, config.model_file)
else:
self._load_local_pretrained_vine_weights(config.local_dir, config.local_filename)
# Move models to devicexwxw
self.to(self._device)
def _load_huggingface_vine_weights(self, model_repo: str, model_file: Optional[str] = None):
"""
Load pretrained VINE weights from HuggingFace Hub.
"""
try:
print(f"Loading VINE weights from HuggingFace repo: {model_repo}")
repo_path = snapshot_download(model_repo, revision=model_file or "main")
weights = load_file(os.path.join(repo_path, "model.safetensors"))
self.load_state_dict(weights, strict=False)
print("β Successfully loaded VINE weights from HuggingFace Hub")
return True
except Exception as e:
print(f"β Error loading VINE weights from HuggingFace Hub: {e}")
print("Using base CLIP models instead")
return False
def _load_local_pretrained_vine_weights(self, local_dir: str, local_filename: Optional[str] = None, epoch: int = 0):
"""
Load pretrained VINE weights from a saved .pt file or ensemble format.
"""
#try: # simple .pt or .pth checkpoint
# x = torch.load(pretrained_path, map_location=self._device, weights_only=False)
# print(f"Loaded VINE checkpoint type: {type(x)}")
full_path = os.path.join(local_dir, local_filename) if local_filename else local_dir
if full_path.endswith(".pkl"):
print(f"Loading VINE weights from: {full_path}")
loaded_vine_model = torch.load(full_path, map_location=self._device, weights_only=False)
print(f"Loaded state type: {type(loaded_vine_model)}")
if not isinstance(loaded_vine_model, dict):
if hasattr(loaded_vine_model, 'clip_cate_model'):
self.clip_cate_model.load_state_dict(loaded_vine_model.clip_cate_model.state_dict())
if hasattr(loaded_vine_model, 'clip_unary_model'):
self.clip_unary_model.load_state_dict(loaded_vine_model.clip_unary_model.state_dict())
if hasattr(loaded_vine_model, 'clip_binary_model'):
self.clip_binary_model.load_state_dict(loaded_vine_model.clip_binary_model.state_dict())
return True
elif full_path.endswith(".pt") or full_path.endswith(".pth"):
state = torch.load(full_path, map_location=self._device, weights_only=True)
print(f"Loaded state type: {type(state)}")
self.load_state_dict(state)
return True
# handle directory + epoch format
if os.path.isdir(full_path):
model_files = [f for f in os.listdir(full_path) if f.endswith(f'.{epoch}.model')]
if model_files:
model_file = os.path.join(full_path, model_files[0])
print(f"Loading VINE weights from: {model_file}")
pretrained_model = torch.load(model_file, map_location="cpu")
# Conversion from PredicateModel-like object to VineModel
# Only copy if attributes exist
if hasattr(pretrained_model, 'clip_cate_model'):
self.clip_cate_model.load_state_dict(pretrained_model.clip_cate_model.state_dict())
if hasattr(pretrained_model, 'clip_unary_model'):
self.clip_unary_model.load_state_dict(pretrained_model.clip_unary_model.state_dict())
if hasattr(pretrained_model, 'clip_binary_model'):
self.clip_binary_model.load_state_dict(pretrained_model.clip_binary_model.state_dict())
print("β Loaded all sub-model weights from ensemble format")
return True
else:
print(f"No model file found for epoch {epoch} in {full_path}")
return False
print("Unsupported format for pretrained_vine_path")
return False
# except Exception as e:
# print(f"β Error loading VINE weights: {e}")
# print("Using base CLIP models instead")
# return False
# def _load_pretrained_vine_weights(self, pretrained_path: str, epoch: int = 0):
# """
# Load pretrained VINE weights from local ensemble format.
# Args:
# pretrained_path: Path to the pretrained model directory or HF model name
# epoch: Epoch number to load (for ensemble format)
# """
# if pretrained_path == "video-fm/vine_v0":
# # Try to load from HuggingFace Hubtry:
# # β
TODO FIXED: Added support for loading .pt/.pth checkpoints with state dicts
# if pretrained_path.endswith(".pt") or pretrained_path.endswith(".pth"):
# print(f"Loading VINE weights from: {pretrained_path}")
# state = torch.load(pretrained_path, map_location="cpu")
# if "clip_cate_model" in state:
# self.clip_cate_model.load_state_dict(state["clip_cate_model"])
# print("β Loaded categorical model weights")
# if "clip_unary_model" in state:
# self.clip_unary_model.load_state_dict(state["clip_unary_model"])
# print("β Loaded unary model weights")
# if "clip_binary_model" in state:
# self.clip_binary_model.load_state_dict(state["clip_binary_model"])
# print("β Loaded binary model weights")
# if "clip_tokenizer" in state:
# self.clip_tokenizer = state["clip_tokenizer"]
# print("β Loaded tokenizer")
# if "clip_processor" in state:
# self.clip_processor = state["clip_processor"]
# print("β Loaded processor")
# print("β All VINE weights loaded successfully")
# return True
# # Load from local ensemble format
# try:
# if os.path.isdir(pretrained_path):
# # Directory format - look for ensemble file
# model_files = [f for f in os.listdir(pretrained_path) if f.endswith(f'.{epoch}.model')]
# if model_files:
# model_file = os.path.join(pretrained_path, model_files[0])
# else:
# print(f"No model file found for epoch {epoch} in {pretrained_path}")
# return False
# else:
# # Direct file path
# model_file = pretrained_path
# print(f"Loading VINE weights from: {model_file}")
# # Load the ensemble model (PredicateModel instance)
# # TODO: conversion from PredicateModel to VineModel
# pretrained_model = torch.load(model_file, map_location='cpu', weights_only=False)
# # Transfer weights from the pretrained model to our HuggingFace models
# if hasattr(pretrained_model, 'clip_cate_model'):
# self.clip_cate_model.load_state_dict(pretrained_model.clip_cate_model.state_dict())
# print("β Loaded categorical model weights")
# if hasattr(pretrained_model, 'clip_unary_model'):
# self.clip_unary_model.load_state_dict(pretrained_model.clip_unary_model.state_dict())
# print("β Loaded unary model weights")
# if hasattr(pretrained_model, 'clip_binary_model'):
# self.clip_binary_model.load_state_dict(pretrained_model.clip_binary_model.state_dict())
# print("β Loaded binary model weights")
# # Also transfer tokenizer and processor if available
# if hasattr(pretrained_model, 'clip_tokenizer'):
# self.clip_tokenizer = pretrained_model.clip_tokenizer
# print("β Loaded tokenizer")
# if hasattr(pretrained_model, 'clip_processor'):
# self.clip_processor = pretrained_model.clip_processor
# print("β Loaded processor")
# print("β Successfully loaded all VINE weights")
# return True
# except Exception as e:
# print(f"β Error loading VINE weights: {e}")
# print("Using base CLIP models instead")
# return False
@classmethod
def from_pretrained_vine(
cls,
model_path: str,
config: Optional[VineConfig] = None,
epoch: int = 0,
**kwargs
):
"""
Create VineModel from pretrained VINE weights.
Args:
model_path: Path to pretrained VINE model
config: Optional config, will create default if None
epoch: Epoch number to load
**kwargs: Additional arguments
Returns:
VineModel instance with loaded weights
"""
# Normalize the incoming model_path into the new VineConfig fields.
if config is None:
# Heuristics: if path looks like a HF repo (contains a "/" and
# doesn't exist on disk) treat it as a repo. Otherwise treat as local.
if model_path and ("/" in model_path and not os.path.exists(model_path)):
config = VineConfig(use_hf_repo=True, model_repo=model_path)
else:
# Local path: could be a file or directory
if os.path.isdir(model_path):
config = VineConfig(use_hf_repo=False, local_dir=model_path)
else:
config = VineConfig(
use_hf_repo=False,
local_dir=os.path.dirname(model_path) or None,
local_filename=os.path.basename(model_path) or None,
)
else:
# Update provided config to reflect the requested pretrained path
if model_path and ("/" in model_path and not os.path.exists(model_path)):
config.use_hf_repo = True
config.model_repo = model_path
config.model_file = None
config.local_dir = None
config.local_filename = None
else:
config.use_hf_repo = False
if os.path.isdir(model_path):
config.local_dir = model_path
config.local_filename = None
else:
config.local_dir = os.path.dirname(model_path) or None
config.local_filename = os.path.basename(model_path) or None
# Create model instance (will automatically load weights)
model = cls(config, **kwargs)
return model
def _text_features_checkpoint(self, model, tokens):
"""Extract text features with gradient checkpointing."""
token_keys = list(tokens.keys())
def get_text_features_wrapped(*inputs):
kwargs = {key: value for key, value in zip(token_keys, inputs)}
return model.get_text_features(**kwargs)
token_values = [tokens[key] for key in token_keys]
return cp.checkpoint(get_text_features_wrapped, *token_values, use_reentrant=False)
def _image_features_checkpoint(self, model, images):
"""Extract image features with gradient checkpointing."""
return cp.checkpoint(model.get_image_features, images, use_reentrant=False)
def clip_sim(self, model, nl_feat, img_feat):
img_feat = img_feat / img_feat.norm(p=2, dim=-1, keepdim=True)
nl_feat = nl_feat / nl_feat.norm(p=2, dim=-1, keepdim=True)
logits = torch.matmul(img_feat, nl_feat.T)
if hasattr(model, "logit_scale"):
logits = logits * model.logit_scale.exp()
return logits
def forward(
self,
video_frames: torch.Tensor,
masks: Dict[int, Dict[int, torch.Tensor]],
bboxes: Dict[int, Dict[int, List]],
categorical_keywords: List[str],
unary_keywords: Optional[List[str]] = None,
binary_keywords: Optional[List[str]] = None,
object_pairs: Optional[List[Tuple[int, int]]] = None,
return_flattened_segments: Optional[bool] = None,
return_valid_pairs: Optional[bool] = None,
interested_object_pairs: Optional[List[Tuple[int, int]]] = None,
debug_visualizations: Optional[bool] = None,
**kwargs
) -> Dict[str, Any]:
"""
Forward pass of the VINE model.
Args:
video_frames: Tensor of shape (num_frames, height, width, 3)
masks: Dict mapping frame_id -> object_id -> mask tensor
bboxes: Dict mapping frame_id -> object_id -> [x1, y1, x2, y2]
categorical_keywords: List of category names to classify objects
unary_keywords: Optional list of unary predicates (actions on single objects)
binary_keywords: Optional list of binary predicates (relations between objects)
object_pairs: Optional list of (obj1_id, obj2_id) pairs for binary classification
Returns:
Dict containing probability distributions for categorical, unary, and binary predictions
"""
if unary_keywords is None:
unary_keywords = []
if binary_keywords is None:
binary_keywords = []
if object_pairs is None:
object_pairs = []
if return_flattened_segments is None:
return_flattened_segments = self.config.return_flattened_segments
if return_valid_pairs is None:
return_valid_pairs = self.config.return_valid_pairs
if interested_object_pairs is None or len(interested_object_pairs) == 0:
interested_object_pairs = getattr(self.config, "interested_object_pairs", []) or []
if debug_visualizations is None:
debug_visualizations = self.debug_visualizations
# Prepare dummy strings for empty categories
dummy_str = ""
# Fill empty categories with dummy strings
if len(categorical_keywords) == 0:
categorical_keywords = [dummy_str]
if len(unary_keywords) == 0:
unary_keywords = [dummy_str]
if len(binary_keywords) == 0:
binary_keywords = [dummy_str]
# Extract text features for all keyword types
categorical_features = self._extract_text_features(
self.clip_cate_model, categorical_keywords
)
unary_features = self._extract_text_features(
self.clip_unary_model, unary_keywords
)
binary_features = self._extract_text_features(
self.clip_binary_model, binary_keywords
)
# Process video frames and extract object features
categorical_probs = {}
unary_probs = {}
binary_probs = {}
# Process each frame
for frame_id, frame_masks in masks.items():
if frame_id >= len(video_frames):
continue
frame = self._frame_to_numpy(video_frames[frame_id])
frame_bboxes = bboxes.get(frame_id, {})
# Extract object features for categorical classification
for obj_id, mask in frame_masks.items():
if obj_id not in frame_bboxes:
continue
bbox = frame_bboxes[obj_id]
# Extract single object image
mask_np = self._mask_to_numpy(mask)
obj_image = extract_single_object(
frame, mask_np, alpha=self.config.alpha
)
# Get image features
obj_features = self._extract_image_features(
self.clip_cate_model, obj_image
)
# Compute similarities for categorical classification
cat_similarities = self.clip_sim(
self.clip_cate_model, categorical_features, obj_features
)
cat_probs = F.softmax(cat_similarities, dim=-1)
# Store categorical predictions
for i, keyword in enumerate(categorical_keywords):
if keyword != dummy_str:
categorical_probs[(obj_id, keyword)] = cat_probs[0, i].item()
# Compute unary predictions
if len(unary_keywords) > 0 and unary_keywords[0] != dummy_str:
unary_similarities = self.clip_sim(
self.clip_unary_model, unary_features, obj_features
)
unary_probs_tensor = F.softmax(unary_similarities, dim=-1)
for i, keyword in enumerate(unary_keywords):
if keyword != dummy_str:
unary_probs[(frame_id, obj_id, keyword)] = unary_probs_tensor[0, i].item()
# Process binary relationships
if len(binary_keywords) > 0 and binary_keywords[0] != dummy_str and len(object_pairs) > 0:
for obj1_id, obj2_id in object_pairs:
for frame_id, frame_masks in masks.items():
if frame_id >= len(video_frames):
continue
if (obj1_id in frame_masks and obj2_id in frame_masks and
obj1_id in bboxes.get(frame_id, {}) and obj2_id in bboxes.get(frame_id, {})):
frame = self._frame_to_numpy(video_frames[frame_id])
mask1 = frame_masks[obj1_id]
mask2 = frame_masks[obj2_id]
mask1_np = self._mask_to_numpy(mask1)
mask2_np = self._mask_to_numpy(mask2)
# Extract object pair image
pair_image = extract_object_subject(
frame, mask1_np[..., None], mask2_np[..., None],
alpha=self.config.alpha,
white_alpha=self.config.white_alpha
)
# Crop to contain both objects
bbox1 = bboxes[frame_id][obj1_id]
bbox2 = bboxes[frame_id][obj2_id]
# Bounding box overlap check
if bbox1[0] >= bbox2[2] or bbox2[1] >= bbox1[3] or \
bbox2[0] >= bbox1[2] or bbox1[1] >= bbox2[3]:
continue
cropped_image = crop_image_contain_bboxes(
pair_image, [bbox1, bbox2], f"frame_{frame_id}"
)
# Get image features
pair_features = self._extract_image_features(
self.clip_binary_model, cropped_image
)
# Compute similarities for binary classification
binary_similarities = self.clip_sim(
self.clip_binary_model, binary_features, pair_features
)
binary_probs_tensor = F.softmax(binary_similarities, dim=-1)
for i, keyword in enumerate(binary_keywords):
if keyword != dummy_str:
binary_probs[(frame_id, (obj1_id, obj2_id), keyword)] = binary_probs_tensor[0, i].item()
# Calculate dummy probability (for compatibility)
dummy_prob = 1.0 / max(len(categorical_keywords), len(unary_keywords), len(binary_keywords))
result: Dict[str, Any] = {
"categorical_probs": {0: categorical_probs}, # Video ID 0
"unary_probs": {0: unary_probs},
"binary_probs": [binary_probs], # List format for compatibility
"dummy_prob": dummy_prob
}
if return_flattened_segments or return_valid_pairs:
flattened = flatten_segments_for_batch(
video_id=0,
segments=masks,
bbox_min_dim=self.config.bbox_min_dim,
)
if return_flattened_segments:
result["flattened_segments"] = flattened
if return_valid_pairs:
interested_pairs = interested_object_pairs if interested_object_pairs else None
result["valid_pairs"] = extract_valid_object_pairs(
flattened["object_ids"],
interested_pairs,
)
if interested_pairs is None:
# Provide all generated pairs for clarity when auto-generated.
result["valid_pairs_metadata"] = {"pair_source": "all_pairs"}
else:
result["valid_pairs_metadata"] = {"pair_source": "filtered", "requested_pairs": interested_pairs}
return result
def _frame_to_numpy(self, frame: Union[torch.Tensor, np.ndarray]) -> np.ndarray:
"""Convert a frame tensor/array to a contiguous numpy array."""
if torch.is_tensor(frame):
frame_np = frame.detach().cpu().numpy()
else:
frame_np = np.asarray(frame)
return np.ascontiguousarray(frame_np)
def _mask_to_numpy(self, mask: Union[torch.Tensor, np.ndarray]) -> np.ndarray:
"""Convert a mask tensor/array to a 2D boolean numpy array."""
if torch.is_tensor(mask):
mask_np = mask.detach().cpu().numpy()
else:
mask_np = np.asarray(mask)
if mask_np.ndim == 3:
if mask_np.shape[0] == 1:
mask_np = mask_np.squeeze(0)
elif mask_np.shape[2] == 1:
mask_np = mask_np.squeeze(2)
if mask_np.ndim != 2:
raise ValueError(f"Mask must be 2D after squeezing, got shape {mask_np.shape}")
return mask_np.astype(bool, copy=False)
def _extract_text_features(self, model, keywords):
"""Extract text features for given keywords."""
tokens = self.clip_tokenizer(
keywords,
return_tensors="pt",
max_length=75,
truncation=True,
padding='max_length'
).to(self._device)
return self._text_features_checkpoint(model, tokens)
def _extract_image_features(self, model, image):
"""Extract image features for given image."""
# Ensure image is in correct format
if isinstance(image, np.ndarray):
if image.dtype != np.uint8:
image = image.astype(np.uint8)
# Convert BGR to RGB if needed
if len(image.shape) == 3 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Process image with CLIP processor
inputs = self.clip_processor(
images=image,
return_tensors="pt"
).to(self._device)
return self._image_features_checkpoint(model, inputs['pixel_values'])
#TODO: return masks and bboxes and their corresponding index
def predict(
self,
video_frames: torch.Tensor,
masks: Dict[int, Dict[int, torch.Tensor]],
bboxes: Dict[int, Dict[int, List]],
categorical_keywords: List[str],
unary_keywords: Optional[List[str]] = None,
binary_keywords: Optional[List[str]] = None,
object_pairs: Optional[List[Tuple[int, int]]] = None,
return_top_k: int = 3,
return_flattened_segments: Optional[bool] = None,
return_valid_pairs: Optional[bool] = None,
interested_object_pairs: Optional[List[Tuple[int, int]]] = None,
debug_visualizations: Optional[bool] = None,
) -> Dict[str, Any]:
"""
High-level prediction method that returns formatted results.
Args:
video_frames: Tensor of shape (num_frames, height, width, 3)
masks: Dict mapping frame_id -> object_id -> mask tensor
bboxes: Dict mapping frame_id -> object_id -> [x1, y1, x2, y2]
categorical_keywords: List of category names
unary_keywords: Optional list of unary predicates
binary_keywords: Optional list of binary predicates
object_pairs: Optional list of object pairs for binary relations
return_top_k: Number of top predictions to return
return_flattened_segments: Whether to include flattened mask/bbox tensors
return_valid_pairs: Whether to compute valid object pairs per frame
interested_object_pairs: Optional subset of object pairs to track
Returns:
Formatted prediction results
"""
with torch.no_grad():
outputs = self.forward(
video_frames=video_frames,
masks=masks,
bboxes=bboxes,
categorical_keywords=categorical_keywords,
unary_keywords=unary_keywords,
binary_keywords=binary_keywords,
object_pairs=object_pairs,
return_flattened_segments=return_flattened_segments,
return_valid_pairs=return_valid_pairs,
interested_object_pairs=interested_object_pairs,
debug_visualizations=debug_visualizations,
)
# Format categorical results
formatted_categorical = {}
for (obj_id, category), prob in outputs["categorical_probs"][0].items():
if obj_id not in formatted_categorical:
formatted_categorical[obj_id] = []
formatted_categorical[obj_id].append((prob, category))
# Sort and take top-k for each object
for obj_id in formatted_categorical:
formatted_categorical[obj_id] = sorted(
formatted_categorical[obj_id], reverse=True
)[:return_top_k]
# Format unary results
formatted_unary = {}
for (frame_id, obj_id, predicate), prob in outputs["unary_probs"][0].items():
key = (frame_id, obj_id)
if key not in formatted_unary:
formatted_unary[key] = []
formatted_unary[key].append((prob, predicate))
# Sort and take top-k
for key in formatted_unary:
formatted_unary[key] = sorted(
formatted_unary[key], reverse=True
)[:return_top_k]
# Format binary results
formatted_binary = {}
if len(outputs["binary_probs"]) > 0:
for (frame_id, obj_pair, predicate), prob in outputs["binary_probs"][0].items():
key = (frame_id, obj_pair)
if key not in formatted_binary:
formatted_binary[key] = []
formatted_binary[key].append((prob, predicate))
# Sort and take top-k
for key in formatted_binary:
formatted_binary[key] = sorted(
formatted_binary[key], reverse=True
)[:return_top_k]
result: Dict[str, Any] = {
"categorical_predictions": formatted_categorical,
"unary_predictions": formatted_unary,
"binary_predictions": formatted_binary,
"confidence_scores": {
"categorical": max([max([p for p, _ in preds], default=0.0)
for preds in formatted_categorical.values()], default=0.0),
"unary": max([max([p for p, _ in preds], default=0.0)
for preds in formatted_unary.values()], default=0.0),
"binary": max([max([p for p, _ in preds], default=0.0)
for preds in formatted_binary.values()], default=0.0)
}
}
if "flattened_segments" in outputs:
result["flattened_segments"] = outputs["flattened_segments"]
if "valid_pairs" in outputs:
result["valid_pairs"] = outputs["valid_pairs"]
if "valid_pairs_metadata" in outputs:
result["valid_pairs_metadata"] = outputs["valid_pairs_metadata"]
return result
|