Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,108 Bytes
f9a6349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# VINE: Video Understanding with Natural Language
[](https://huggingface.co/video-fm/vine)
[](https://github.com/kevinxuez/LASER)
VINE is a video understanding model that processes videos along with categorical, unary, and binary keywords to return probability distributions over those keywords for detected objects and their relationships.
## Quick Start
```python
from transformers import AutoModel
from vine_hf import VineConfig, VineModel, VinePipeline
# Load VINE model from HuggingFace
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
# Create pipeline with your checkpoint paths
vine_pipeline = VinePipeline(
model=model,
tokenizer=None,
sam_config_path="/path/to/sam2_config.yaml",
sam_checkpoint_path="/path/to/sam2_checkpoint.pt",
gd_config_path="/path/to/grounding_dino_config.py",
gd_checkpoint_path="/path/to/grounding_dino_checkpoint.pth",
device="cuda",
trust_remote_code=True
)
# Process a video
results = vine_pipeline(
'path/to/video.mp4',
categorical_keywords=['human', 'dog', 'frisbee'],
unary_keywords=['running', 'jumping'],
binary_keywords=['chasing', 'behind'],
return_top_k=3
)
```
## Installation
### Option 1: Automated Setup (Recommended)
```bash
# Download the setup script
wget https://raw.githubusercontent.com/kevinxuez/vine_hf/main/setup_vine_demo.sh
# Run the setup
bash setup_vine_demo.sh
# Activate environment
conda activate vine_demo
```
### Option 2: Manual Installation
```bash
# 1. Create conda environment
conda create -n vine_demo python=3.10 -y
conda activate vine_demo
# 2. Install PyTorch with CUDA support
pip install torch==2.7.1 torchvision==0.22.1 --index-url https://download.pytorch.org/whl/cu126
# 3. Install core dependencies
pip install transformers huggingface-hub safetensors
# 4. Clone and install required repositories
git clone https://github.com/video-fm/video-sam2.git
git clone https://github.com/video-fm/GroundingDINO.git
git clone https://github.com/kevinxuez/LASER.git
git clone https://github.com/kevinxuez/vine_hf.git
# Install in editable mode
pip install -e ./video-sam2
pip install -e ./GroundingDINO
pip install -e ./LASER
pip install -e ./vine_hf
# Build GroundingDINO extensions
cd GroundingDINO && python setup.py build_ext --force --inplace && cd ..
```
## Required Checkpoints
VINE requires SAM2 and GroundingDINO checkpoints for segmentation. Download these separately:
### SAM2 Checkpoint
```bash
wget https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt
wget https://raw.githubusercontent.com/facebookresearch/sam2/main/sam2/configs/sam2.1/sam2.1_hiera_t.yaml
```
### GroundingDINO Checkpoint
```bash
wget https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
wget https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py
```
## Architecture
```
video-fm/vine (HuggingFace Hub)
βββ VINE Model Weights (~1.8GB)
β βββ Categorical CLIP model (fine-tuned)
β βββ Unary CLIP model (fine-tuned)
β βββ Binary CLIP model (fine-tuned)
βββ Architecture Files
βββ vine_config.py
βββ vine_model.py
βββ vine_pipeline.py
βββ utilities
User Provides:
βββ Dependencies (via pip/conda)
β βββ laser (video processing utilities)
β βββ sam2 (segmentation)
β βββ groundingdino (object detection)
βββ Checkpoints (downloaded separately)
βββ SAM2 model files
βββ GroundingDINO model files
```
## Why This Architecture?
This separation of concerns provides several benefits:
1. **Lightweight Distribution**: Only VINE-specific weights (~1.8GB) are on HuggingFace
2. **Version Control**: Users can choose their preferred SAM2/GroundingDINO versions
3. **Licensing**: Keeps different model licenses separate
4. **Flexibility**: Easy to swap segmentation backends
5. **Standard Practice**: Similar to models like LLaVA, BLIP-2, etc.
## Full Usage Example
```python
import os
from pathlib import Path
from transformers import AutoModel
from vine_hf import VinePipeline
# Set up paths
checkpoint_dir = Path("/path/to/checkpoints")
sam_config = checkpoint_dir / "sam2_hiera_t.yaml"
sam_checkpoint = checkpoint_dir / "sam2_hiera_tiny.pt"
gd_config = checkpoint_dir / "GroundingDINO_SwinT_OGC.py"
gd_checkpoint = checkpoint_dir / "groundingdino_swint_ogc.pth"
# Load VINE from HuggingFace
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
# Create pipeline
vine_pipeline = VinePipeline(
model=model,
tokenizer=None,
sam_config_path=str(sam_config),
sam_checkpoint_path=str(sam_checkpoint),
gd_config_path=str(gd_config),
gd_checkpoint_path=str(gd_checkpoint),
device="cuda:0",
trust_remote_code=True
)
# Process video
results = vine_pipeline(
"path/to/video.mp4",
categorical_keywords=['person', 'dog', 'ball'],
unary_keywords=['running', 'jumping', 'sitting'],
binary_keywords=['chasing', 'next to', 'holding'],
object_pairs=[(0, 1), (0, 2)], # person-dog, person-ball
return_top_k=5,
include_visualizations=True
)
# Access results
print(f"Detected {results['summary']['num_objects_detected']} objects")
print(f"Top categories: {results['summary']['top_categories']}")
print(f"Top actions: {results['summary']['top_actions']}")
print(f"Top relations: {results['summary']['top_relations']}")
# Access detailed predictions
for obj_id, predictions in results['categorical_predictions'].items():
print(f"\nObject {obj_id}:")
for prob, category in predictions:
print(f" {category}: {prob:.3f}")
```
## Output Format
```python
{
"categorical_predictions": {
object_id: [(probability, category), ...]
},
"unary_predictions": {
(frame_id, object_id): [(probability, action), ...]
},
"binary_predictions": {
(frame_id, (obj1_id, obj2_id)): [(probability, relation), ...]
},
"confidence_scores": {
"categorical": float,
"unary": float,
"binary": float
},
"summary": {
"num_objects_detected": int,
"top_categories": [(category, probability), ...],
"top_actions": [(action, probability), ...],
"top_relations": [(relation, probability), ...]
},
"visualizations": { # if include_visualizations=True
"vine": {
"all": {"frames": [...], "video_path": "..."},
...
}
}
}
```
## Configuration Options
```python
from vine_hf import VineConfig
config = VineConfig(
model_name="openai/clip-vit-base-patch32", # CLIP backbone
segmentation_method="grounding_dino_sam2", # or "sam2"
box_threshold=0.35, # GroundingDINO threshold
text_threshold=0.25, # GroundingDINO threshold
target_fps=5, # Video sampling rate
visualize=True, # Enable visualizations
visualization_dir="outputs/", # Output directory
debug_visualizations=False, # Debug mode
device="cuda:0" # Device
)
```
## Deployment Examples
### Local Script
```python
# test_vine.py
from transformers import AutoModel
from vine_hf import VinePipeline
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
pipeline = VinePipeline(model=model, ...)
results = pipeline("video.mp4", ...)
```
### HuggingFace Spaces
```python
# app.py for Gradio Space
import gradio as gr
from transformers import AutoModel
from vine_hf import VinePipeline
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
# ... set up pipeline and Gradio interface
```
### API Server
```python
# FastAPI server
from fastapi import FastAPI
from transformers import AutoModel
from vine_hf import VinePipeline
app = FastAPI()
model = AutoModel.from_pretrained('video-fm/vine', trust_remote_code=True)
pipeline = VinePipeline(model=model, ...)
@app.post("/process")
async def process_video(video_path: str):
return pipeline(video_path, ...)
```
## Troubleshooting
### Import Errors
```bash
# Make sure all dependencies are installed
pip list | grep -E "laser|sam2|groundingdino"
# Reinstall if needed
pip install -e ./LASER
pip install -e ./video-sam2
pip install -e ./GroundingDINO
```
### CUDA Errors
```python
# Check CUDA availability
import torch
print(torch.cuda.is_available())
print(torch.version.cuda)
# Use CPU if needed
pipeline = VinePipeline(model=model, device="cpu", ...)
```
### Checkpoint Not Found
```bash
# Verify checkpoint paths
ls -lh /path/to/sam2_hiera_tiny.pt
ls -lh /path/to/groundingdino_swint_ogc.pth
```
## System Requirements
- **Python**: 3.10+
- **CUDA**: 11.8+ (for GPU)
- **GPU**: 8GB+ VRAM recommended (T4, V100, A100, etc.)
- **RAM**: 16GB+ recommended
- **Storage**: ~3GB for checkpoints
## Citation
```bibtex
@article{laser2024,
title={LASER: Language-guided Object Grounding and Relation Understanding in Videos},
author={Your Authors},
journal={Your Conference/Journal},
year={2024}
}
```
## License
This model and code are released under the MIT License. Note that SAM2 and GroundingDINO have their own respective licenses.
## Links
- **Model**: https://huggingface.co/video-fm/vine
- **Code**: https://github.com/kevinxuez/LASER
- **vine_hf Package**: https://github.com/kevinxuez/vine_hf
- **SAM2**: https://github.com/facebookresearch/sam2
- **GroundingDINO**: https://github.com/IDEA-Research/GroundingDINO
## Support
For issues or questions:
- **Model/Architecture**: [HuggingFace Discussions](https://huggingface.co/video-fm/vine/discussions)
- **LASER Framework**: [GitHub Issues](https://github.com/kevinxuez/LASER/issues)
- **vine_hf Package**: [GitHub Issues](https://github.com/kevinxuez/vine_hf/issues)
|