Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import numpy as np | |
| import cv2 | |
| import os | |
| from typing import Dict, List, Tuple, Optional, Any, Union | |
| from transformers import Pipeline | |
| import tempfile | |
| import uuid | |
| from .vine_config import VineConfig | |
| from .vine_model import VineModel | |
| from .vis_utils import render_dino_frames, render_sam_frames, render_vine_frame_sets | |
| from laser.loading import load_video | |
| from laser.preprocess.mask_generation_grounding_dino import generate_masks_grounding_dino | |
| class VinePipeline(Pipeline): | |
| """ | |
| Pipeline for VINE model that handles end-to-end video understanding. | |
| This pipeline takes a video file or frames, along with segmentation method | |
| and keyword lists, and returns probability distributions over the keywords. | |
| Segmentation Model Configuration: | |
| The pipeline requires SAM2 and GroundingDINO models for mask generation. | |
| You can configure custom paths via constructor kwargs: | |
| - sam_config_path: Path to SAM2 config (e.g., "configs/sam2.1/sam2.1_hiera_b+.yaml") | |
| - sam_checkpoint_path: Path to SAM2 checkpoint (e.g., "checkpoints/sam2.1_hiera_base_plus.pt") | |
| - gd_config_path: Path to GroundingDINO config (e.g., "groundingdino/config/GroundingDINO_SwinT_OGC.py") | |
| - gd_checkpoint_path: Path to GroundingDINO checkpoint (e.g., "checkpoints/groundingdino_swint_ogc.pth") | |
| Old: | |
| - SAM2: ~/research/sam2/ or /home/asethi04/LASER_NEW/LASER/sam2/ | |
| - GroundingDINO: /home/asethi04/LASER_NEW/LASER/GroundingDINO/ | |
| Alternative: Use set_segmentation_models() to provide pre-initialized model instances. | |
| """ | |
| def __init__( | |
| self, | |
| sam_config_path: Optional[str] = None, | |
| sam_checkpoint_path: Optional[str] = None, | |
| gd_config_path: Optional[str] = None, | |
| gd_checkpoint_path: Optional[str] = None, | |
| **kwargs | |
| ): | |
| self.grounding_model = None | |
| self.sam_predictor = None | |
| self.mask_generator = None | |
| self.sam_config_path = sam_config_path | |
| self.sam_checkpoint_path = sam_checkpoint_path | |
| self.gd_config_path = gd_config_path | |
| self.gd_checkpoint_path = gd_checkpoint_path | |
| super().__init__(**kwargs) | |
| # Set default parameters from config | |
| self.segmentation_method = getattr(self.model.config, 'segmentation_method', 'grounding_dino_sam2') | |
| self.box_threshold = getattr(self.model.config, 'box_threshold', 0.35) | |
| self.text_threshold = getattr(self.model.config, 'text_threshold', 0.25) | |
| self.target_fps = getattr(self.model.config, 'target_fps', 1) | |
| self.visualize = getattr(self.model.config, 'visualize', False) | |
| self.visualization_dir = getattr(self.model.config, 'visualization_dir', None) | |
| self.debug_visualizations = getattr(self.model.config, 'debug_visualizations', False) | |
| self._device = getattr(self.model.config, '_device') | |
| if kwargs.get("device") is not None: | |
| self._device = kwargs.get("device") | |
| def set_segmentation_models( | |
| self, | |
| *, | |
| sam_predictor=None, | |
| mask_generator=None, | |
| grounding_model=None | |
| ): | |
| """ | |
| Set pre-initialized segmentation models, bypassing automatic initialization/current_values | |
| Args: | |
| sam_predictor: Pre-built SAM2 video predictor | |
| mask_generator: Pre-built SAM2 automatic mask generator | |
| grounding_model: Pre-built GroundingDINO model | |
| """ | |
| if sam_predictor is not None: | |
| self.sam_predictor = sam_predictor | |
| if mask_generator is not None: | |
| self.mask_generator = mask_generator | |
| if grounding_model is not None: | |
| self.grounding_model = grounding_model | |
| def _sanitize_parameters(self, **kwargs): | |
| """Sanitize parameters for different pipeline stages.""" | |
| preprocess_kwargs = {} | |
| forward_kwargs = {} | |
| postprocess_kwargs = {} | |
| # Preprocess parameters | |
| if "segmentation_method" in kwargs: | |
| preprocess_kwargs["segmentation_method"] = kwargs["segmentation_method"] | |
| if "target_fps" in kwargs: | |
| preprocess_kwargs["target_fps"] = kwargs["target_fps"] | |
| if "box_threshold" in kwargs: | |
| preprocess_kwargs["box_threshold"] = kwargs["box_threshold"] | |
| if "text_threshold" in kwargs: | |
| preprocess_kwargs["text_threshold"] = kwargs["text_threshold"] | |
| if "categorical_keywords" in kwargs: | |
| preprocess_kwargs["categorical_keywords"] = kwargs["categorical_keywords"] | |
| # Forward parameters | |
| if "categorical_keywords" in kwargs: | |
| forward_kwargs["categorical_keywords"] = kwargs["categorical_keywords"] | |
| if "unary_keywords" in kwargs: | |
| forward_kwargs["unary_keywords"] = kwargs["unary_keywords"] | |
| if "binary_keywords" in kwargs: | |
| forward_kwargs["binary_keywords"] = kwargs["binary_keywords"] | |
| if "object_pairs" in kwargs: | |
| forward_kwargs["object_pairs"] = kwargs["object_pairs"] | |
| if "return_flattened_segments" in kwargs: | |
| forward_kwargs["return_flattened_segments"] = kwargs["return_flattened_segments"] | |
| if "return_valid_pairs" in kwargs: | |
| forward_kwargs["return_valid_pairs"] = kwargs["return_valid_pairs"] | |
| if "interested_object_pairs" in kwargs: | |
| forward_kwargs["interested_object_pairs"] = kwargs["interested_object_pairs"] | |
| if "debug_visualizations" in kwargs: | |
| forward_kwargs["debug_visualizations"] = kwargs["debug_visualizations"] | |
| postprocess_kwargs["debug_visualizations"] = kwargs["debug_visualizations"] | |
| # Postprocess parameters | |
| if "return_top_k" in kwargs: | |
| postprocess_kwargs["return_top_k"] = kwargs["return_top_k"] | |
| if "self.visualize" in kwargs: | |
| postprocess_kwargs["self.visualize"] = kwargs["self.visualize"] | |
| return preprocess_kwargs, forward_kwargs, postprocess_kwargs | |
| def preprocess( | |
| self, | |
| video_input: Union[str, np.ndarray, torch.Tensor], | |
| segmentation_method: str = None, | |
| target_fps: int = None, | |
| box_threshold: float = None, | |
| text_threshold: float = None, | |
| categorical_keywords: List[str] = None, | |
| **kwargs | |
| ) -> Dict[str, Any]: | |
| """ | |
| Preprocess video input and generate masks. | |
| Args: | |
| video_input: Path to video file, or video tensor/array | |
| segmentation_method: "sam2" or "grounding_dino_sam2" | |
| target_fps: Target FPS for video processing | |
| box_threshold: Box threshold for Grounding DINO | |
| text_threshold: Text threshold for Grounding DINO | |
| categorical_keywords: Keywords for Grounding DINO segmentation | |
| Returns: | |
| Dict containing video frames, masks, and bboxes | |
| """ | |
| # Use defaults from config if not provided | |
| if segmentation_method is None: | |
| segmentation_method = self.segmentation_method | |
| if target_fps is None: | |
| target_fps = self.target_fps | |
| if box_threshold is None: | |
| box_threshold = self.box_threshold | |
| if text_threshold is None: | |
| text_threshold = self.text_threshold | |
| if categorical_keywords is None: | |
| categorical_keywords = ["object"] # Default generic category | |
| if isinstance(video_input, str): | |
| # Video file path | |
| video_tensor = load_video(video_input, target_fps=target_fps) | |
| if isinstance(video_tensor, list): | |
| video_tensor = np.array(video_tensor) | |
| elif isinstance(video_tensor, torch.Tensor): | |
| video_tensor = video_tensor.cpu().numpy() | |
| elif isinstance(video_input, (np.ndarray, torch.Tensor)): | |
| # Video tensor/array | |
| if isinstance(video_input, torch.Tensor): | |
| video_tensor = video_input.numpy() | |
| else: | |
| video_tensor = video_input | |
| else: | |
| raise ValueError(f"Unsupported video input type: {type(video_input)}") | |
| # Ensure video tensor is numpy array | |
| if not isinstance(video_tensor, np.ndarray): | |
| video_tensor = np.array(video_tensor) | |
| # Ensure video tensor is in correct format | |
| if len(video_tensor.shape) != 4: | |
| raise ValueError(f"Expected video tensor shape (frames, height, width, channels), got {video_tensor.shape}") | |
| # Generate masks and bboxes based on segmentation method | |
| visualization_data: Dict[str, Any] = {} | |
| print(f"Segmentation method: {segmentation_method}") | |
| if segmentation_method == "sam2": | |
| masks, bboxes, vis_data = self._generate_sam2_masks(video_tensor) | |
| elif segmentation_method == "grounding_dino_sam2": | |
| masks, bboxes, vis_data = self._generate_grounding_dino_sam2_masks( | |
| video_tensor, categorical_keywords, box_threshold, text_threshold, video_input | |
| ) | |
| else: | |
| raise ValueError(f"Unsupported segmentation method: {segmentation_method}") | |
| if vis_data: | |
| visualization_data.update(vis_data) | |
| visualization_data.setdefault("sam_masks", masks) | |
| return { | |
| "video_frames": torch.tensor(video_tensor), | |
| "masks": masks, | |
| "bboxes": bboxes, | |
| "num_frames": len(video_tensor), | |
| "visualization_data": visualization_data, | |
| } | |
| def _generate_sam2_masks(self, video_tensor: np.ndarray) -> Tuple[Dict, Dict, Dict[str, Any]]: | |
| """Generate masks using SAM2 automatic mask generation.""" | |
| # Initialize SAM2 models if not already done | |
| print("Generating SAM2 masks...") | |
| if self.mask_generator is None: | |
| self._initialize_segmentation_models() | |
| if self.mask_generator is None: | |
| raise ValueError("SAM2 mask generator not available") | |
| masks: Dict[int, Dict[int, torch.Tensor]] = {} | |
| bboxes: Dict[int, Dict[int, List[int]]] = {} | |
| for frame_id, frame in enumerate(video_tensor): | |
| if isinstance(frame, np.ndarray) and frame.dtype != np.uint8: | |
| frame = (frame * 255).astype(np.uint8) if frame.max() <= 1 else frame.astype(np.uint8) | |
| height, width, _ = frame.shape | |
| frame_masks = self.mask_generator.generate(frame) | |
| masks[frame_id] = {} | |
| bboxes[frame_id] = {} | |
| for obj_id, mask_data in enumerate(frame_masks): | |
| mask = mask_data["segmentation"] | |
| if isinstance(mask, np.ndarray): | |
| mask = torch.from_numpy(mask) | |
| if len(mask.shape) == 2: | |
| mask = mask.unsqueeze(-1) | |
| elif len(mask.shape) == 3 and mask.shape[0] == 1: | |
| mask = mask.permute(1, 2, 0) | |
| wrapped_id = obj_id + 1 | |
| masks[frame_id][wrapped_id] = mask | |
| mask_np = mask.squeeze().numpy() if isinstance(mask, torch.Tensor) else mask.squeeze() | |
| coords = np.where(mask_np > 0) | |
| if len(coords[0]) > 0: | |
| y1, y2 = coords[0].min(), coords[0].max() | |
| x1, x2 = coords[1].min(), coords[1].max() | |
| bboxes[frame_id][wrapped_id] = [x1, y1, x2, y2] | |
| return masks, bboxes, {"sam_masks": masks} | |
| def _generate_grounding_dino_sam2_masks( | |
| self, | |
| video_tensor: np.ndarray, | |
| categorical_keywords: List[str], | |
| box_threshold: float, | |
| text_threshold: float, | |
| video_path: str, | |
| ) -> Tuple[Dict, Dict, Dict[str, Any]]: | |
| """Generate masks using Grounding DINO + SAM2.""" | |
| # Initialize models if not already done | |
| print("Generating Grounding DINO + SAM2 masks...") | |
| if self.grounding_model is None or self.sam_predictor is None: | |
| self._initialize_segmentation_models() | |
| if self.grounding_model is None or self.sam_predictor is None: | |
| raise ValueError("GroundingDINO or SAM2 models not available") | |
| temp_video_path = None | |
| if video_path is None or not isinstance(video_path, str): | |
| temp_video_path = self._create_temp_video(video_tensor) | |
| video_path = temp_video_path | |
| CHUNK = 5 | |
| classes_ls = [categorical_keywords[i:i + CHUNK] for i in range(0, len(categorical_keywords), CHUNK)] | |
| video_segments, oid_class_pred, _ = generate_masks_grounding_dino( | |
| self.grounding_model, | |
| box_threshold, | |
| text_threshold, | |
| self.sam_predictor, | |
| self.mask_generator, | |
| video_tensor, | |
| video_path, | |
| "temp_video", | |
| out_dir=tempfile.gettempdir(), | |
| classes_ls=classes_ls, | |
| target_fps=self.target_fps, | |
| visualize=self.debug_visualizations, | |
| frames=None, | |
| max_prop_time=10 | |
| ) | |
| masks: Dict[int, Dict[int, torch.Tensor]] = {} | |
| bboxes: Dict[int, Dict[int, List[int]]] = {} | |
| for frame_id, frame_masks in video_segments.items(): | |
| masks[frame_id] = {} | |
| bboxes[frame_id] = {} | |
| for obj_id, mask in frame_masks.items(): | |
| if not isinstance(mask, torch.Tensor): | |
| mask = torch.tensor(mask) | |
| masks[frame_id][obj_id] = mask | |
| mask_np = mask.numpy() | |
| if mask_np.ndim == 3 and mask_np.shape[0] == 1: | |
| mask_np = np.squeeze(mask_np, axis=0) | |
| coords = np.where(mask_np > 0) | |
| if len(coords[0]) > 0: | |
| y1, y2 = coords[0].min(), coords[0].max() | |
| x1, x2 = coords[1].min(), coords[1].max() | |
| bboxes[frame_id][obj_id] = [x1, y1, x2, y2] | |
| if temp_video_path and os.path.exists(temp_video_path): | |
| os.remove(temp_video_path) | |
| vis_data: Dict[str, Any] = { | |
| "sam_masks": masks, | |
| "dino_labels": oid_class_pred, | |
| } | |
| return masks, bboxes, vis_data | |
| def _initialize_segmentation_models(self): | |
| """Initialize segmentation models based on the requested method and configured paths.""" | |
| if (self.sam_predictor is None or self.mask_generator is None): | |
| self._initialize_sam2_models() | |
| if self.grounding_model is None: | |
| self._initialize_grounding_dino_model() | |
| def _initialize_sam2_models(self): | |
| """Initialize SAM2 video predictor and mask generator.""" | |
| try: | |
| from sam2.build_sam import build_sam2_video_predictor, build_sam2 | |
| from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator | |
| except ImportError as e: | |
| print(f"Warning: Could not import SAM2: {e}") | |
| return | |
| # Resolve SAM2 paths | |
| config_path, checkpoint_path = self._resolve_sam2_paths() | |
| # Validate paths if custom ones were provided | |
| if self.sam_config_path is not None and not os.path.exists(config_path): | |
| raise ValueError(f"SAM2 config path not found: {config_path}") | |
| if self.sam_checkpoint_path is not None and not os.path.exists(checkpoint_path): | |
| raise ValueError(f"SAM2 checkpoint path not found: {checkpoint_path}") | |
| # Only proceed if we have valid paths | |
| if not os.path.exists(checkpoint_path): | |
| print(f"Warning: SAM2 checkpoint not found at {checkpoint_path}") | |
| print("SAM2 functionality will be unavailable") | |
| return | |
| try: | |
| device = self._device | |
| print(type(device)) | |
| # Video predictor | |
| self.sam_predictor = build_sam2_video_predictor( | |
| config_path, checkpoint_path, device=device | |
| ) | |
| # Mask generator | |
| sam2_model = build_sam2(config_path, checkpoint_path, device=device, apply_postprocessing=False) | |
| self.mask_generator = SAM2AutomaticMaskGenerator( | |
| model=sam2_model, | |
| points_per_side=32, | |
| points_per_batch=32, | |
| pred_iou_thresh=0.7, | |
| stability_score_thresh=0.8, | |
| crop_n_layers=2, | |
| box_nms_thresh=0.6, | |
| crop_n_points_downscale_factor=2, | |
| min_mask_region_area=100, | |
| use_m2m=True, | |
| ) | |
| print("✓ SAM2 models initialized successfully") | |
| except Exception as e: | |
| raise ValueError(f"Failed to initialize SAM2 with custom paths: {e}") | |
| def _initialize_grounding_dino_model(self): | |
| """Initialize GroundingDINO model.""" | |
| try: | |
| from groundingdino.util.inference import Model as gd_Model | |
| except ImportError as e: | |
| print(f"Warning: Could not import GroundingDINO: {e}") | |
| return | |
| # Resolve GroundingDINO paths | |
| config_path, checkpoint_path = self._resolve_grounding_dino_paths() | |
| # Validate paths if custom ones were provided | |
| if self.gd_config_path is not None and not os.path.exists(config_path): | |
| raise ValueError(f"GroundingDINO config path not found: {config_path}") | |
| if self.gd_checkpoint_path is not None and not os.path.exists(checkpoint_path): | |
| raise ValueError(f"GroundingDINO checkpoint path not found: {checkpoint_path}") | |
| # Only proceed if we have valid paths | |
| if not (os.path.exists(config_path) and os.path.exists(checkpoint_path)): | |
| print(f"Warning: GroundingDINO models not found at {config_path} / {checkpoint_path}") | |
| print("GroundingDINO functionality will be unavailable") | |
| return | |
| try: | |
| device = self._device | |
| print(type(device)) | |
| self.grounding_model = gd_Model( | |
| model_config_path=config_path, | |
| model_checkpoint_path=checkpoint_path, | |
| device=device | |
| ) | |
| print("✓ GroundingDINO model initialized successfully") | |
| except Exception as e: | |
| raise ValueError(f"Failed to initialize GroundingDINO with custom paths: {e}") | |
| def _resolve_sam2_paths(self): | |
| """Resolve SAM2 config and checkpoint paths.""" | |
| # Use custom paths if provided | |
| if self.sam_config_path and self.sam_checkpoint_path: | |
| return self.sam_config_path, self.sam_checkpoint_path | |
| def _resolve_grounding_dino_paths(self): | |
| """Resolve GroundingDINO config and checkpoint paths.""" | |
| # Use custom paths if provided | |
| if self.gd_config_path and self.gd_checkpoint_path: | |
| return self.gd_config_path, self.gd_checkpoint_path | |
| def _prepare_visualization_dir(self, name: str, enabled: bool) -> Optional[str]: | |
| """ | |
| Ensure a directory exists for visualization artifacts and return it. | |
| If visualization is disabled, returns None. | |
| """ | |
| if not enabled: | |
| return None | |
| if self.visualization_dir: | |
| target_dir = os.path.join(self.visualization_dir, name) if name else self.visualization_dir | |
| os.makedirs(target_dir, exist_ok=True) | |
| return target_dir | |
| return tempfile.mkdtemp(prefix=f"vine_{name}_") | |
| def _create_temp_video(self, video_tensor: np.ndarray, base_dir: Optional[str] = None, prefix: str = "temp_video") -> str: | |
| """Create a temporary video file from video tensor.""" | |
| if base_dir is None: | |
| base_dir = tempfile.mkdtemp(prefix=f"vine_{prefix}_") | |
| else: | |
| os.makedirs(base_dir, exist_ok=True) | |
| file_name = f"{prefix}_{uuid.uuid4().hex}.mp4" | |
| temp_path = os.path.join(base_dir, file_name) | |
| # Use OpenCV to write video | |
| height, width = video_tensor.shape[1:3] | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(temp_path, fourcc, self.target_fps, (width, height)) | |
| for frame in video_tensor: | |
| # Convert RGB to BGR for OpenCV | |
| if len(frame.shape) == 3 and frame.shape[2] == 3: | |
| frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | |
| else: | |
| frame_bgr = frame | |
| out.write(frame_bgr.astype(np.uint8)) | |
| out.release() | |
| return temp_path | |
| def _forward(self, model_inputs: Dict[str, Any], **forward_kwargs) -> Dict[str, Any]: | |
| """Forward pass through the model.""" | |
| outputs = self.model.predict( | |
| video_frames=model_inputs["video_frames"], | |
| masks=model_inputs["masks"], | |
| bboxes=model_inputs["bboxes"], | |
| **forward_kwargs | |
| ) | |
| outputs.setdefault("video_frames", model_inputs.get("video_frames")) | |
| outputs.setdefault("bboxes", model_inputs.get("bboxes")) | |
| outputs.setdefault("masks", model_inputs.get("masks")) | |
| outputs.setdefault("visualization_data", model_inputs.get("visualization_data")) | |
| return outputs | |
| def postprocess( | |
| self, | |
| model_outputs: Dict[str, Any], | |
| return_top_k: int = 3, | |
| visualize: Optional[bool] = None, | |
| **kwargs | |
| ) -> Dict[str, Any]: | |
| """ | |
| Postprocess model outputs into user-friendly format. | |
| Args: | |
| model_outputs: Raw model outputs | |
| return_top_k: Number of top predictions to return | |
| self.visualize: Whether to include visualization data | |
| Returns: | |
| Formatted results | |
| """ | |
| results = { | |
| "categorical_predictions": model_outputs.get("categorical_predictions", {}), | |
| "unary_predictions": model_outputs.get("unary_predictions", {}), | |
| "binary_predictions": model_outputs.get("binary_predictions", {}), | |
| "confidence_scores": model_outputs.get("confidence_scores", {}), | |
| "summary": self._generate_summary(model_outputs) | |
| } | |
| if "flattened_segments" in model_outputs: | |
| results["flattened_segments"] = model_outputs["flattened_segments"] | |
| if "valid_pairs" in model_outputs: | |
| results["valid_pairs"] = model_outputs["valid_pairs"] | |
| if "valid_pairs_metadata" in model_outputs: | |
| results["valid_pairs_metadata"] = model_outputs["valid_pairs_metadata"] | |
| if "visualization_data" in model_outputs: | |
| results["visualization_data"] = model_outputs["visualization_data"] | |
| if self.visualize and "video_frames" in model_outputs and "bboxes" in model_outputs: | |
| frames_tensor = model_outputs["video_frames"] | |
| if isinstance(frames_tensor, torch.Tensor): | |
| frames_np = frames_tensor.detach().cpu().numpy() | |
| else: | |
| frames_np = np.asarray(frames_tensor) | |
| if frames_np.dtype != np.uint8: | |
| if np.issubdtype(frames_np.dtype, np.floating): | |
| max_val = frames_np.max() if frames_np.size else 0.0 | |
| scale = 255.0 if max_val <= 1.0 else 1.0 | |
| frames_np = (frames_np * scale).clip(0, 255).astype(np.uint8) | |
| else: | |
| frames_np = frames_np.clip(0, 255).astype(np.uint8) | |
| cat_label_lookup: Dict[int, Tuple[str, float]] = {} | |
| for obj_id, preds in model_outputs.get("categorical_predictions", {}).items(): | |
| if preds: | |
| prob, label = preds[0] | |
| cat_label_lookup[obj_id] = (label, prob) | |
| unary_preds = model_outputs.get("unary_predictions", {}) | |
| unary_lookup: Dict[int, Dict[int, List[Tuple[float, str]]]] = {} | |
| for (frame_id, obj_id), preds in unary_preds.items(): | |
| if preds: | |
| unary_lookup.setdefault(frame_id, {})[obj_id] = preds | |
| binary_preds = model_outputs.get("binary_predictions", {}) | |
| binary_lookup: Dict[int, List[Tuple[Tuple[int, int], List[Tuple[float, str]]]]] = {} | |
| for (frame_id, obj_pair), preds in binary_preds.items(): | |
| if preds: | |
| binary_lookup.setdefault(frame_id, []).append((obj_pair, preds)) | |
| bboxes = model_outputs["bboxes"] | |
| visualization_data = model_outputs.get("visualization_data", {}) | |
| visualizations: Dict[str, Dict[str, Any]] = {} | |
| debug_visualizations = kwargs.get("debug_visualizations") | |
| if debug_visualizations is None: | |
| debug_visualizations = self.debug_visualizations | |
| vine_frame_sets = render_vine_frame_sets( | |
| frames_np, | |
| bboxes, | |
| cat_label_lookup, | |
| unary_lookup, | |
| binary_lookup, | |
| visualization_data.get("sam_masks"), | |
| ) | |
| vine_visuals: Dict[str, Dict[str, Any]] = {} | |
| final_frames = vine_frame_sets.get("all", []) | |
| if final_frames: | |
| final_entry: Dict[str, Any] = {"frames": final_frames, "video_path": None} | |
| final_dir = self._prepare_visualization_dir("all", enabled=self.visualize) | |
| final_entry["video_path"] = self._create_temp_video( | |
| np.stack(final_frames, axis=0), | |
| base_dir=final_dir, | |
| prefix="all_visualization" | |
| ) | |
| vine_visuals["all"] = final_entry | |
| if debug_visualizations: | |
| sam_masks = visualization_data.get("sam_masks") | |
| if sam_masks: | |
| sam_frames = render_sam_frames(frames_np, sam_masks, visualization_data.get("dino_labels")) | |
| sam_entry = {"frames": sam_frames, "video_path": None} | |
| if sam_frames: | |
| sam_dir = self._prepare_visualization_dir("sam", enabled=self.visualize) | |
| sam_entry["video_path"] = self._create_temp_video( | |
| np.stack(sam_frames, axis=0), | |
| base_dir=sam_dir, | |
| prefix="sam_visualization" | |
| ) | |
| visualizations["sam"] = sam_entry | |
| dino_labels = visualization_data.get("dino_labels") | |
| if dino_labels: | |
| dino_frames = render_dino_frames(frames_np, bboxes, dino_labels) | |
| dino_entry = {"frames": dino_frames, "video_path": None} | |
| if dino_frames: | |
| dino_dir = self._prepare_visualization_dir("dino", enabled=self.visualize) | |
| dino_entry["video_path"] = self._create_temp_video( | |
| np.stack(dino_frames, axis=0), | |
| base_dir=dino_dir, | |
| prefix="dino_visualization" | |
| ) | |
| visualizations["dino"] = dino_entry | |
| for name in ("object", "unary", "binary"): | |
| frames_list = vine_frame_sets.get(name, []) | |
| entry: Dict[str, Any] = {"frames": frames_list, "video_path": None} | |
| if frames_list: | |
| vine_dir = self._prepare_visualization_dir(name, enabled=self.visualize) | |
| entry["video_path"] = self._create_temp_video( | |
| np.stack(frames_list, axis=0), | |
| base_dir=vine_dir, | |
| prefix=f"{name}_visualization" | |
| ) | |
| vine_visuals[name] = entry | |
| if vine_visuals: | |
| visualizations["vine"] = vine_visuals | |
| if visualizations: | |
| results["visualizations"] = visualizations | |
| return results | |
| def _generate_summary(self, model_outputs: Dict[str, Any]) -> Dict[str, Any]: | |
| """Generate a summary of the predictions.""" | |
| categorical_preds = model_outputs.get("categorical_predictions", {}) | |
| unary_preds = model_outputs.get("unary_predictions", {}) | |
| binary_preds = model_outputs.get("binary_predictions", {}) | |
| summary = { | |
| "num_objects_detected": len(categorical_preds), | |
| "num_unary_predictions": len(unary_preds), | |
| "num_binary_predictions": len(binary_preds), | |
| "top_categories": [], | |
| "top_actions": [], | |
| "top_relations": [] | |
| } | |
| # Extract top categories | |
| all_categories = [] | |
| for obj_preds in categorical_preds.values(): | |
| if obj_preds: | |
| all_categories.extend(obj_preds) | |
| if all_categories: | |
| sorted_categories = sorted(all_categories, reverse=True) | |
| summary["top_categories"] = [(cat, prob) for prob, cat in sorted_categories[:3]] | |
| # Extract top actions | |
| all_actions = [] | |
| for action_preds in unary_preds.values(): | |
| if action_preds: | |
| all_actions.extend(action_preds) | |
| if all_actions: | |
| sorted_actions = sorted(all_actions, reverse=True) | |
| summary["top_actions"] = [(act, prob) for prob, act in sorted_actions[:3]] | |
| # Extract top relations | |
| all_relations = [] | |
| for rel_preds in binary_preds.values(): | |
| if rel_preds: | |
| all_relations.extend(rel_preds) | |
| if all_relations: | |
| sorted_relations = sorted(all_relations, reverse=True) | |
| summary["top_relations"] = [(rel, prob) for prob, rel in sorted_relations[:3]] | |
| return summary | |