Spaces:
Running
on
Zero
Running
on
Zero
moqingyan123
commited on
Commit
·
17f21ca
1
Parent(s):
f71f431
updates:
Browse files- app.py +364 -41
- outputs/debug_crops/frame_0_obj_0.jpg +0 -0
- outputs/debug_crops/frame_0_obj_1.jpg +0 -0
- outputs/debug_crops/frame_0_obj_2.jpg +0 -0
- outputs/debug_crops/frame_0_obj_3.jpg +0 -0
- outputs/debug_crops/frame_0_obj_4.jpg +0 -0
- outputs/debug_crops/frame_0_obj_5.jpg +0 -0
- outputs/debug_crops/frame_1_obj_0.jpg +0 -0
- outputs/debug_crops/frame_1_obj_1.jpg +0 -0
- outputs/debug_crops/frame_1_obj_2.jpg +0 -0
- outputs/debug_crops/frame_1_obj_3.jpg +0 -0
- outputs/debug_crops/frame_1_obj_5.jpg +0 -0
- src/LASER/laser/models/model_utils.py +11 -4
- vine_hf/__pycache__/__init__.cpython-310.pyc +0 -0
- vine_hf/__pycache__/flattening.cpython-310.pyc +0 -0
- vine_hf/__pycache__/vine_config.cpython-310.pyc +0 -0
- vine_hf/__pycache__/vine_model.cpython-310.pyc +0 -0
- vine_hf/__pycache__/vine_pipeline.cpython-310.pyc +0 -0
- vine_hf/__pycache__/vis_utils.cpython-310.pyc +0 -0
- vine_hf/vine_model.py +18 -0
- vine_hf/vine_pipeline.py +46 -0
- vine_hf/vis_utils.py +25 -3
app.py
CHANGED
|
@@ -60,6 +60,208 @@ print(
|
|
| 60 |
)
|
| 61 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
@lru_cache(maxsize=1)
|
| 64 |
def _load_vine_pipeline():
|
| 65 |
"""
|
|
@@ -96,16 +298,16 @@ def _load_vine_pipeline():
|
|
| 96 |
)
|
| 97 |
|
| 98 |
|
| 99 |
-
@spaces.GPU(duration=
|
| 100 |
def process_video(
|
| 101 |
video_file,
|
| 102 |
categorical_keywords,
|
| 103 |
unary_keywords,
|
| 104 |
binary_keywords,
|
| 105 |
-
object_pairs,
|
| 106 |
output_fps,
|
| 107 |
box_threshold,
|
| 108 |
text_threshold,
|
|
|
|
| 109 |
):
|
| 110 |
vine_pipe = _load_vine_pipeline()
|
| 111 |
|
|
@@ -130,11 +332,17 @@ def process_video(
|
|
| 130 |
binary_keywords = (
|
| 131 |
[kw.strip() for kw in binary_keywords.split(",")] if binary_keywords else []
|
| 132 |
)
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
results = vine_pipe(
|
| 140 |
inputs=video_file,
|
|
@@ -150,8 +358,17 @@ def process_video(
|
|
| 150 |
box_threshold=box_threshold,
|
| 151 |
text_threshold=text_threshold,
|
| 152 |
target_fps=output_fps,
|
|
|
|
| 153 |
)
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
vine_pipe.box_threshold = box_threshold
|
| 156 |
vine_pipe.text_threshold = text_threshold
|
| 157 |
vine_pipe.target_fps = output_fps
|
|
@@ -194,7 +411,47 @@ def process_video(
|
|
| 194 |
"Warning: annotated video not found or empty; check visualization settings."
|
| 195 |
)
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
|
| 200 |
def _video_component(label: str, *, is_output: bool = False):
|
|
@@ -214,6 +471,9 @@ def _video_component(label: str, *, is_output: bool = False):
|
|
| 214 |
kwargs["type"] = "filepath"
|
| 215 |
if "sources" in sig.parameters:
|
| 216 |
kwargs["sources"] = ["upload"]
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
if is_output and "autoplay" in sig.parameters:
|
| 219 |
kwargs["autoplay"] = True
|
|
@@ -240,40 +500,103 @@ def _create_blocks():
|
|
| 240 |
return gr.Blocks(**blocks_kwargs)
|
| 241 |
|
| 242 |
|
| 243 |
-
# Create Gradio interface
|
| 244 |
with _create_blocks() as demo:
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
value="person, car, tree, background",
|
| 249 |
-
)
|
| 250 |
-
unary_input = gr.Textbox(
|
| 251 |
-
label="Unary Keywords (comma-separated)", value="walking, running, standing"
|
| 252 |
-
)
|
| 253 |
-
binary_input = gr.Textbox(
|
| 254 |
-
label="Binary Keywords (comma-separated)",
|
| 255 |
-
placeholder="e.g., chasing, carrying",
|
| 256 |
-
)
|
| 257 |
-
pairs_input = gr.Textbox(
|
| 258 |
-
label="Object Pairs (comma-separated indices)",
|
| 259 |
-
placeholder="e.g., 0-1,0-2 for pairs of objects",
|
| 260 |
-
)
|
| 261 |
-
fps_input = gr.Number(
|
| 262 |
-
label="Output FPS (affects processing speed)", value=1 # default 1 FPS
|
| 263 |
-
)
|
| 264 |
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
)
|
| 269 |
-
text_threshold_input = gr.Slider(
|
| 270 |
-
label="Text Threshold", minimum=0.1, maximum=0.9, value=0.25, step=0.05
|
| 271 |
-
)
|
| 272 |
-
|
| 273 |
-
submit_btn = gr.Button("Process Video", variant="primary")
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
submit_btn.click(
|
| 279 |
fn=process_video,
|
|
@@ -282,12 +605,12 @@ with _create_blocks() as demo:
|
|
| 282 |
categorical_input,
|
| 283 |
unary_input,
|
| 284 |
binary_input,
|
| 285 |
-
pairs_input,
|
| 286 |
fps_input,
|
| 287 |
box_threshold_input,
|
| 288 |
text_threshold_input,
|
|
|
|
| 289 |
],
|
| 290 |
-
outputs=[video_output,
|
| 291 |
)
|
| 292 |
|
| 293 |
if __name__ == "__main__":
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
|
| 63 |
+
def format_summary(summary, binary_confidence_threshold=0.8):
|
| 64 |
+
"""
|
| 65 |
+
Format the summary dictionary into a readable markdown string.
|
| 66 |
+
Filters binary relations by confidence threshold.
|
| 67 |
+
"""
|
| 68 |
+
if not summary or not isinstance(summary, dict):
|
| 69 |
+
return "# Detection Summary\n\nNo events detected or processing in progress..."
|
| 70 |
+
|
| 71 |
+
output_lines = ["# Detection Summary\n"]
|
| 72 |
+
has_content = False
|
| 73 |
+
|
| 74 |
+
# Categorical keywords
|
| 75 |
+
if "categorical_keywords" in summary and summary["categorical_keywords"]:
|
| 76 |
+
output_lines.append("## Categorical Keywords\n")
|
| 77 |
+
cate = summary["categorical_keywords"]
|
| 78 |
+
if isinstance(cate, dict) and cate:
|
| 79 |
+
has_content = True
|
| 80 |
+
for kw, info in cate.items():
|
| 81 |
+
output_lines.append(f"**{kw}**")
|
| 82 |
+
if isinstance(info, dict):
|
| 83 |
+
for key, val in info.items():
|
| 84 |
+
output_lines.append(f" - {key}: {val}")
|
| 85 |
+
else:
|
| 86 |
+
output_lines.append(f" - {info}")
|
| 87 |
+
output_lines.append("")
|
| 88 |
+
elif isinstance(cate, list) and cate:
|
| 89 |
+
has_content = True
|
| 90 |
+
for item in cate:
|
| 91 |
+
output_lines.append(f"- {item}")
|
| 92 |
+
output_lines.append("")
|
| 93 |
+
|
| 94 |
+
# Unary keywords
|
| 95 |
+
if "unary_keywords" in summary and summary["unary_keywords"]:
|
| 96 |
+
output_lines.append("## Unary Keywords\n")
|
| 97 |
+
unary = summary["unary_keywords"]
|
| 98 |
+
if isinstance(unary, dict) and unary:
|
| 99 |
+
has_content = True
|
| 100 |
+
for kw, info in unary.items():
|
| 101 |
+
output_lines.append(f"**{kw}**")
|
| 102 |
+
if isinstance(info, dict):
|
| 103 |
+
for key, val in info.items():
|
| 104 |
+
output_lines.append(f" - {key}: {val}")
|
| 105 |
+
else:
|
| 106 |
+
output_lines.append(f" - {info}")
|
| 107 |
+
output_lines.append("")
|
| 108 |
+
elif isinstance(unary, list) and unary:
|
| 109 |
+
has_content = True
|
| 110 |
+
for item in unary:
|
| 111 |
+
output_lines.append(f"- {item}")
|
| 112 |
+
output_lines.append("")
|
| 113 |
+
|
| 114 |
+
# Binary keywords - show ALL binary relations for debugging
|
| 115 |
+
print(f"DEBUG: Checking binary_keywords...")
|
| 116 |
+
print(f" 'binary_keywords' in summary: {'binary_keywords' in summary}")
|
| 117 |
+
if 'binary_keywords' in summary:
|
| 118 |
+
print(f" summary['binary_keywords'] truthy: {bool(summary['binary_keywords'])}")
|
| 119 |
+
print(f" summary['binary_keywords'] type: {type(summary['binary_keywords'])}")
|
| 120 |
+
print(f" summary['binary_keywords'] value: {summary['binary_keywords']}")
|
| 121 |
+
|
| 122 |
+
if "binary_keywords" in summary and summary["binary_keywords"]:
|
| 123 |
+
output_lines.append(f"## Binary Keywords\n")
|
| 124 |
+
binary = summary["binary_keywords"]
|
| 125 |
+
print(f"DEBUG: Processing binary keywords, type: {type(binary)}, length: {len(binary) if isinstance(binary, (dict, list)) else 'N/A'}")
|
| 126 |
+
if isinstance(binary, dict) and binary:
|
| 127 |
+
has_content = True
|
| 128 |
+
# Show all binary relations, sorted by confidence
|
| 129 |
+
binary_items = []
|
| 130 |
+
for kw, info in binary.items():
|
| 131 |
+
if isinstance(info, dict):
|
| 132 |
+
confidence = info.get("confidence", info.get("score", 0))
|
| 133 |
+
binary_items.append((kw, info, confidence))
|
| 134 |
+
else:
|
| 135 |
+
binary_items.append((kw, info, 0))
|
| 136 |
+
|
| 137 |
+
# Sort by confidence descending
|
| 138 |
+
binary_items.sort(key=lambda x: x[2], reverse=True)
|
| 139 |
+
|
| 140 |
+
high_conf_count = 0
|
| 141 |
+
low_conf_count = 0
|
| 142 |
+
|
| 143 |
+
# Show high confidence items first
|
| 144 |
+
output_lines.append(f"### High Confidence (≥ {binary_confidence_threshold})\n")
|
| 145 |
+
for kw, info, confidence in binary_items:
|
| 146 |
+
if confidence >= binary_confidence_threshold:
|
| 147 |
+
high_conf_count += 1
|
| 148 |
+
if isinstance(info, dict):
|
| 149 |
+
output_lines.append(f"**{kw}** (confidence: {confidence:.2f})")
|
| 150 |
+
for key, val in info.items():
|
| 151 |
+
if key not in ["confidence", "score"]:
|
| 152 |
+
output_lines.append(f" - {key}: {val}")
|
| 153 |
+
else:
|
| 154 |
+
output_lines.append(f"**{kw}**: {info}")
|
| 155 |
+
output_lines.append("")
|
| 156 |
+
|
| 157 |
+
if high_conf_count == 0:
|
| 158 |
+
output_lines.append(f"*No binary relations found with confidence ≥ {binary_confidence_threshold}*\n")
|
| 159 |
+
|
| 160 |
+
# Show lower confidence items for debugging
|
| 161 |
+
output_lines.append(f"### Lower Confidence (< {binary_confidence_threshold})\n")
|
| 162 |
+
for kw, info, confidence in binary_items:
|
| 163 |
+
if confidence < binary_confidence_threshold:
|
| 164 |
+
low_conf_count += 1
|
| 165 |
+
if isinstance(info, dict):
|
| 166 |
+
output_lines.append(f"**{kw}** (confidence: {confidence:.2f})")
|
| 167 |
+
for key, val in info.items():
|
| 168 |
+
if key not in ["confidence", "score"]:
|
| 169 |
+
output_lines.append(f" - {key}: {val}")
|
| 170 |
+
else:
|
| 171 |
+
output_lines.append(f"**{kw}**: {info}")
|
| 172 |
+
output_lines.append("")
|
| 173 |
+
|
| 174 |
+
if low_conf_count == 0:
|
| 175 |
+
output_lines.append(f"*No binary relations found with confidence < {binary_confidence_threshold}*\n")
|
| 176 |
+
|
| 177 |
+
output_lines.append(f"**Total binary relations detected: {len(binary_items)}**\n")
|
| 178 |
+
elif isinstance(binary, list) and binary:
|
| 179 |
+
has_content = True
|
| 180 |
+
for item in binary:
|
| 181 |
+
output_lines.append(f"- {item}")
|
| 182 |
+
output_lines.append("")
|
| 183 |
+
|
| 184 |
+
# Object pairs - show ALL object pair interactions for debugging
|
| 185 |
+
print(f"DEBUG: Checking object_pairs...")
|
| 186 |
+
print(f" 'object_pairs' in summary: {'object_pairs' in summary}")
|
| 187 |
+
if 'object_pairs' in summary:
|
| 188 |
+
print(f" summary['object_pairs'] truthy: {bool(summary['object_pairs'])}")
|
| 189 |
+
print(f" summary['object_pairs'] type: {type(summary['object_pairs'])}")
|
| 190 |
+
print(f" summary['object_pairs'] value: {summary['object_pairs']}")
|
| 191 |
+
|
| 192 |
+
if "object_pairs" in summary and summary["object_pairs"]:
|
| 193 |
+
output_lines.append(f"## Object Pair Interactions\n")
|
| 194 |
+
pairs = summary["object_pairs"]
|
| 195 |
+
print(f"DEBUG: Processing object pairs, type: {type(pairs)}, length: {len(pairs) if isinstance(pairs, (dict, list)) else 'N/A'}")
|
| 196 |
+
if isinstance(pairs, dict) and pairs:
|
| 197 |
+
has_content = True
|
| 198 |
+
# Show all object pairs, sorted by confidence
|
| 199 |
+
pair_items = []
|
| 200 |
+
for pair, info in pairs.items():
|
| 201 |
+
if isinstance(info, dict):
|
| 202 |
+
confidence = info.get("confidence", info.get("score", 0))
|
| 203 |
+
pair_items.append((pair, info, confidence))
|
| 204 |
+
else:
|
| 205 |
+
pair_items.append((pair, info, 0))
|
| 206 |
+
|
| 207 |
+
# Sort by confidence descending
|
| 208 |
+
pair_items.sort(key=lambda x: x[2], reverse=True)
|
| 209 |
+
|
| 210 |
+
high_conf_count = 0
|
| 211 |
+
low_conf_count = 0
|
| 212 |
+
|
| 213 |
+
# Show high confidence items first
|
| 214 |
+
output_lines.append(f"### High Confidence (≥ {binary_confidence_threshold})\n")
|
| 215 |
+
for pair, info, confidence in pair_items:
|
| 216 |
+
if confidence >= binary_confidence_threshold:
|
| 217 |
+
high_conf_count += 1
|
| 218 |
+
if isinstance(info, dict):
|
| 219 |
+
output_lines.append(f"**{pair}** (confidence: {confidence:.2f})")
|
| 220 |
+
for key, val in info.items():
|
| 221 |
+
if key not in ["confidence", "score"]:
|
| 222 |
+
output_lines.append(f" - {key}: {val}")
|
| 223 |
+
else:
|
| 224 |
+
output_lines.append(f"**{pair}**: {info}")
|
| 225 |
+
output_lines.append("")
|
| 226 |
+
|
| 227 |
+
if high_conf_count == 0:
|
| 228 |
+
output_lines.append(f"*No object pairs found with confidence ≥ {binary_confidence_threshold}*\n")
|
| 229 |
+
|
| 230 |
+
# Show lower confidence items for debugging
|
| 231 |
+
output_lines.append(f"### Lower Confidence (< {binary_confidence_threshold})\n")
|
| 232 |
+
for pair, info, confidence in pair_items:
|
| 233 |
+
if confidence < binary_confidence_threshold:
|
| 234 |
+
low_conf_count += 1
|
| 235 |
+
if isinstance(info, dict):
|
| 236 |
+
output_lines.append(f"**{pair}** (confidence: {confidence:.2f})")
|
| 237 |
+
for key, val in info.items():
|
| 238 |
+
if key not in ["confidence", "score"]:
|
| 239 |
+
output_lines.append(f" - {key}: {val}")
|
| 240 |
+
else:
|
| 241 |
+
output_lines.append(f"**{pair}**: {info}")
|
| 242 |
+
output_lines.append("")
|
| 243 |
+
|
| 244 |
+
if low_conf_count == 0:
|
| 245 |
+
output_lines.append(f"*No object pairs found with confidence < {binary_confidence_threshold}*\n")
|
| 246 |
+
|
| 247 |
+
output_lines.append(f"**Total object pairs detected: {len(pair_items)}**\n")
|
| 248 |
+
elif isinstance(pairs, list) and pairs:
|
| 249 |
+
has_content = True
|
| 250 |
+
for item in pairs:
|
| 251 |
+
output_lines.append(f"- {item}")
|
| 252 |
+
output_lines.append("")
|
| 253 |
+
|
| 254 |
+
# If no content was added, show the raw summary for debugging
|
| 255 |
+
if not has_content:
|
| 256 |
+
output_lines.append("## Raw Summary Data\n")
|
| 257 |
+
output_lines.append("```json")
|
| 258 |
+
import json
|
| 259 |
+
output_lines.append(json.dumps(summary, indent=2, default=str))
|
| 260 |
+
output_lines.append("```")
|
| 261 |
+
|
| 262 |
+
return "\n".join(output_lines)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
@lru_cache(maxsize=1)
|
| 266 |
def _load_vine_pipeline():
|
| 267 |
"""
|
|
|
|
| 298 |
)
|
| 299 |
|
| 300 |
|
| 301 |
+
@spaces.GPU(duration=120) # Up to ~5 minutes of H200 ZeroGPU time per call
|
| 302 |
def process_video(
|
| 303 |
video_file,
|
| 304 |
categorical_keywords,
|
| 305 |
unary_keywords,
|
| 306 |
binary_keywords,
|
|
|
|
| 307 |
output_fps,
|
| 308 |
box_threshold,
|
| 309 |
text_threshold,
|
| 310 |
+
binary_confidence_threshold,
|
| 311 |
):
|
| 312 |
vine_pipe = _load_vine_pipeline()
|
| 313 |
|
|
|
|
| 332 |
binary_keywords = (
|
| 333 |
[kw.strip() for kw in binary_keywords.split(",")] if binary_keywords else []
|
| 334 |
)
|
| 335 |
+
|
| 336 |
+
# Debug: Print what we're sending to the pipeline
|
| 337 |
+
print("\n" + "=" * 80)
|
| 338 |
+
print("INPUT TO VINE PIPELINE:")
|
| 339 |
+
print(f" categorical_keywords: {categorical_keywords}")
|
| 340 |
+
print(f" unary_keywords: {unary_keywords}")
|
| 341 |
+
print(f" binary_keywords: {binary_keywords}")
|
| 342 |
+
print("=" * 80 + "\n")
|
| 343 |
+
|
| 344 |
+
# Object pairs is now optional - empty list will auto-generate all pairs in vine_model.py
|
| 345 |
+
object_pairs = []
|
| 346 |
|
| 347 |
results = vine_pipe(
|
| 348 |
inputs=video_file,
|
|
|
|
| 358 |
box_threshold=box_threshold,
|
| 359 |
text_threshold=text_threshold,
|
| 360 |
target_fps=output_fps,
|
| 361 |
+
binary_confidence_threshold=binary_confidence_threshold,
|
| 362 |
)
|
| 363 |
|
| 364 |
+
# Debug: Print what the pipeline returned
|
| 365 |
+
print("\n" + "=" * 80)
|
| 366 |
+
print("PIPELINE RESULTS DEBUG:")
|
| 367 |
+
print(f" results type: {type(results)}")
|
| 368 |
+
if isinstance(results, dict):
|
| 369 |
+
print(f" results keys: {list(results.keys())}")
|
| 370 |
+
print("=" * 80 + "\n")
|
| 371 |
+
|
| 372 |
vine_pipe.box_threshold = box_threshold
|
| 373 |
vine_pipe.text_threshold = text_threshold
|
| 374 |
vine_pipe.target_fps = output_fps
|
|
|
|
| 411 |
"Warning: annotated video not found or empty; check visualization settings."
|
| 412 |
)
|
| 413 |
|
| 414 |
+
# Debug: Print summary structure
|
| 415 |
+
import json
|
| 416 |
+
print("=" * 80)
|
| 417 |
+
print("SUMMARY DEBUG OUTPUT:")
|
| 418 |
+
print(f"Summary type: {type(summary)}")
|
| 419 |
+
print(f"Summary keys: {summary.keys() if isinstance(summary, dict) else 'N/A'}")
|
| 420 |
+
if isinstance(summary, dict):
|
| 421 |
+
print("\nFULL SUMMARY JSON:")
|
| 422 |
+
print(json.dumps(summary, indent=2, default=str))
|
| 423 |
+
print("\n" + "=" * 80)
|
| 424 |
+
|
| 425 |
+
# Check for any keys that might contain binary relation data
|
| 426 |
+
print("\nLOOKING FOR BINARY RELATION DATA:")
|
| 427 |
+
possible_keys = ['binary', 'binary_keywords', 'binary_relations', 'object_pairs',
|
| 428 |
+
'pairs', 'relations', 'interactions', 'pairwise']
|
| 429 |
+
for pkey in possible_keys:
|
| 430 |
+
if pkey in summary:
|
| 431 |
+
print(f" FOUND: '{pkey}' -> {summary[pkey]}")
|
| 432 |
+
|
| 433 |
+
print("\nALL KEYS IN SUMMARY:")
|
| 434 |
+
for key in summary.keys():
|
| 435 |
+
print(f"\n{key}:")
|
| 436 |
+
print(f" Type: {type(summary[key])}")
|
| 437 |
+
if isinstance(summary[key], dict):
|
| 438 |
+
print(f" Length: {len(summary[key])}")
|
| 439 |
+
print(f" Keys (first 10): {list(summary[key].keys())[:10]}")
|
| 440 |
+
# Print all items for anything that might be binary relations
|
| 441 |
+
if any(term in key.lower() for term in ['binary', 'pair', 'relation', 'interaction']):
|
| 442 |
+
print(f" ALL ITEMS:")
|
| 443 |
+
for k, v in list(summary[key].items())[:20]: # First 20 items
|
| 444 |
+
print(f" {k}: {v}")
|
| 445 |
+
else:
|
| 446 |
+
print(f" Sample: {dict(list(summary[key].items())[:2])}")
|
| 447 |
+
elif isinstance(summary[key], list):
|
| 448 |
+
print(f" Length: {len(summary[key])}")
|
| 449 |
+
print(f" Sample: {summary[key][:2]}")
|
| 450 |
+
print("=" * 80)
|
| 451 |
+
|
| 452 |
+
# Format summary as readable markdown text, filtering by confidence threshold
|
| 453 |
+
formatted_summary = format_summary(summary, binary_confidence_threshold)
|
| 454 |
+
return video_path_for_ui, formatted_summary
|
| 455 |
|
| 456 |
|
| 457 |
def _video_component(label: str, *, is_output: bool = False):
|
|
|
|
| 471 |
kwargs["type"] = "filepath"
|
| 472 |
if "sources" in sig.parameters:
|
| 473 |
kwargs["sources"] = ["upload"]
|
| 474 |
+
# Restrict to MP4 files only
|
| 475 |
+
if "file_types" in sig.parameters:
|
| 476 |
+
kwargs["file_types"] = [".mp4"]
|
| 477 |
|
| 478 |
if is_output and "autoplay" in sig.parameters:
|
| 479 |
kwargs["autoplay"] = True
|
|
|
|
| 500 |
return gr.Blocks(**blocks_kwargs)
|
| 501 |
|
| 502 |
|
| 503 |
+
# Create Gradio interface with two-column layout
|
| 504 |
with _create_blocks() as demo:
|
| 505 |
+
gr.Markdown(
|
| 506 |
+
"""
|
| 507 |
+
# 🎬 VINE: Video-based Interaction and Event Detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
+
Upload an MP4 video and specify keywords to detect objects, actions, and interactions in your video.
|
| 510 |
+
"""
|
| 511 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
|
| 513 |
+
with gr.Row():
|
| 514 |
+
# Left column: Inputs
|
| 515 |
+
with gr.Column(scale=1):
|
| 516 |
+
gr.Markdown("### Input Configuration")
|
| 517 |
+
|
| 518 |
+
video_input = _video_component("Upload Video (MP4 only)", is_output=False)
|
| 519 |
+
gr.Markdown("*Note: Only MP4 format is currently supported*")
|
| 520 |
+
|
| 521 |
+
gr.Markdown("#### Detection Keywords")
|
| 522 |
+
categorical_input = gr.Textbox(
|
| 523 |
+
label="Categorical Keywords",
|
| 524 |
+
placeholder="e.g., person, car, dog",
|
| 525 |
+
value="person, car, dog",
|
| 526 |
+
info="Objects to detect in the video (comma-separated)"
|
| 527 |
+
)
|
| 528 |
+
unary_input = gr.Textbox(
|
| 529 |
+
label="Unary Keywords",
|
| 530 |
+
placeholder="e.g., walking, running, standing",
|
| 531 |
+
value="walking, running, standing",
|
| 532 |
+
info="Single-object actions to detect (comma-separated)"
|
| 533 |
+
)
|
| 534 |
+
binary_input = gr.Textbox(
|
| 535 |
+
label="Binary Keywords",
|
| 536 |
+
placeholder="e.g., chasing, carrying",
|
| 537 |
+
info="Object-to-object interactions to detect (comma-separated)"
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
gr.Markdown("#### Processing Settings")
|
| 541 |
+
fps_input = gr.Number(
|
| 542 |
+
label="Output FPS",
|
| 543 |
+
value=1,
|
| 544 |
+
info="Frames per second for processing (lower = faster)"
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 548 |
+
box_threshold_input = gr.Slider(
|
| 549 |
+
label="Box Threshold",
|
| 550 |
+
minimum=0.1,
|
| 551 |
+
maximum=0.9,
|
| 552 |
+
value=0.35,
|
| 553 |
+
step=0.05,
|
| 554 |
+
info="Confidence threshold for object detection"
|
| 555 |
+
)
|
| 556 |
+
text_threshold_input = gr.Slider(
|
| 557 |
+
label="Text Threshold",
|
| 558 |
+
minimum=0.1,
|
| 559 |
+
maximum=0.9,
|
| 560 |
+
value=0.25,
|
| 561 |
+
step=0.05,
|
| 562 |
+
info="Confidence threshold for text-based detection"
|
| 563 |
+
)
|
| 564 |
+
binary_confidence_input = gr.Slider(
|
| 565 |
+
label="Binary Relation Confidence Threshold",
|
| 566 |
+
minimum=0.0,
|
| 567 |
+
maximum=1.0,
|
| 568 |
+
value=0.8,
|
| 569 |
+
step=0.05,
|
| 570 |
+
info="Minimum confidence to show binary relations and object pairs"
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
submit_btn = gr.Button("🚀 Process Video", variant="primary", size="lg")
|
| 574 |
+
|
| 575 |
+
# Right column: Outputs
|
| 576 |
+
with gr.Column(scale=1):
|
| 577 |
+
gr.Markdown("### Results")
|
| 578 |
+
|
| 579 |
+
video_output = _video_component("Annotated Video Output", is_output=True)
|
| 580 |
+
|
| 581 |
+
gr.Markdown("### Detection Summary")
|
| 582 |
+
summary_output = gr.Markdown(
|
| 583 |
+
value="Results will appear here after processing...",
|
| 584 |
+
elem_classes=["summary-output"]
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
gr.Markdown(
|
| 588 |
+
"""
|
| 589 |
+
---
|
| 590 |
+
### How to Use
|
| 591 |
+
1. Upload an MP4 video file
|
| 592 |
+
2. Specify the objects, actions, and interactions you want to detect
|
| 593 |
+
3. Adjust processing settings if needed (including binary relation confidence threshold)
|
| 594 |
+
4. Click "Process Video" to analyze
|
| 595 |
+
|
| 596 |
+
The system will automatically detect all binary relations between detected objects
|
| 597 |
+
and show only those with confidence above the threshold (default: 0.8).
|
| 598 |
+
"""
|
| 599 |
+
)
|
| 600 |
|
| 601 |
submit_btn.click(
|
| 602 |
fn=process_video,
|
|
|
|
| 605 |
categorical_input,
|
| 606 |
unary_input,
|
| 607 |
binary_input,
|
|
|
|
| 608 |
fps_input,
|
| 609 |
box_threshold_input,
|
| 610 |
text_threshold_input,
|
| 611 |
+
binary_confidence_input,
|
| 612 |
],
|
| 613 |
+
outputs=[video_output, summary_output],
|
| 614 |
)
|
| 615 |
|
| 616 |
if __name__ == "__main__":
|
outputs/debug_crops/frame_0_obj_0.jpg
CHANGED
|
|
outputs/debug_crops/frame_0_obj_1.jpg
CHANGED
|
|
outputs/debug_crops/frame_0_obj_2.jpg
CHANGED
|
|
outputs/debug_crops/frame_0_obj_3.jpg
CHANGED
|
|
outputs/debug_crops/frame_0_obj_4.jpg
CHANGED
|
|
outputs/debug_crops/frame_0_obj_5.jpg
CHANGED
|
|
outputs/debug_crops/frame_1_obj_0.jpg
CHANGED
|
|
outputs/debug_crops/frame_1_obj_1.jpg
CHANGED
|
|
outputs/debug_crops/frame_1_obj_2.jpg
CHANGED
|
|
outputs/debug_crops/frame_1_obj_3.jpg
CHANGED
|
|
outputs/debug_crops/frame_1_obj_5.jpg
CHANGED
|
|
src/LASER/laser/models/model_utils.py
CHANGED
|
@@ -117,7 +117,12 @@ def crop_image_contain_bboxes(img, bbox_ls, data_id):
|
|
| 117 |
return img[y1:y2, x1:x2]
|
| 118 |
|
| 119 |
def extract_object_subject(img, red_mask, blue_mask, alpha=0.5, white_alpha=0.8):
|
| 120 |
-
# Ensure the masks are binary (0 or 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
red_mask = red_mask.astype(bool)
|
| 122 |
blue_mask = blue_mask.astype(bool)
|
| 123 |
non_masked_area = ~(red_mask | blue_mask)
|
|
@@ -126,16 +131,18 @@ def extract_object_subject(img, red_mask, blue_mask, alpha=0.5, white_alpha=0.8)
|
|
| 126 |
b, g, r = cv2.split(img)
|
| 127 |
|
| 128 |
# Adjust the red channel based on the red mask
|
| 129 |
-
r = np.where(red_mask
|
| 130 |
|
| 131 |
# Adjust the blue channel based on the blue mask
|
| 132 |
-
b = np.where(blue_mask
|
| 133 |
|
| 134 |
# Merge the channels back together
|
| 135 |
output_img = cv2.merge((b, g, r))
|
| 136 |
|
| 137 |
white_img = np.full_like(output_img, 255, dtype=np.uint8)
|
| 138 |
-
|
|
|
|
|
|
|
| 139 |
|
| 140 |
return output_img
|
| 141 |
|
|
|
|
| 117 |
return img[y1:y2, x1:x2]
|
| 118 |
|
| 119 |
def extract_object_subject(img, red_mask, blue_mask, alpha=0.5, white_alpha=0.8):
|
| 120 |
+
# Ensure the masks are 2D and binary (0 or 1)
|
| 121 |
+
if red_mask.ndim == 3:
|
| 122 |
+
red_mask = red_mask[:, :, 0]
|
| 123 |
+
if blue_mask.ndim == 3:
|
| 124 |
+
blue_mask = blue_mask[:, :, 0]
|
| 125 |
+
|
| 126 |
red_mask = red_mask.astype(bool)
|
| 127 |
blue_mask = blue_mask.astype(bool)
|
| 128 |
non_masked_area = ~(red_mask | blue_mask)
|
|
|
|
| 131 |
b, g, r = cv2.split(img)
|
| 132 |
|
| 133 |
# Adjust the red channel based on the red mask
|
| 134 |
+
r = np.where(red_mask, np.clip(r + (255 - r) * alpha, 0, 255), r).astype(np.uint8)
|
| 135 |
|
| 136 |
# Adjust the blue channel based on the blue mask
|
| 137 |
+
b = np.where(blue_mask, np.clip(b + (255 - b) * alpha, 0, 255), b).astype(np.uint8)
|
| 138 |
|
| 139 |
# Merge the channels back together
|
| 140 |
output_img = cv2.merge((b, g, r))
|
| 141 |
|
| 142 |
white_img = np.full_like(output_img, 255, dtype=np.uint8)
|
| 143 |
+
# Expand non_masked_area to 3D for proper broadcasting with 3-channel images
|
| 144 |
+
non_masked_area_3d = np.expand_dims(non_masked_area, axis=-1)
|
| 145 |
+
output_img = np.where(non_masked_area_3d, cv2.addWeighted(output_img, 1 - white_alpha, white_img, white_alpha, 0), output_img)
|
| 146 |
|
| 147 |
return output_img
|
| 148 |
|
vine_hf/__pycache__/__init__.cpython-310.pyc
CHANGED
|
Binary files a/vine_hf/__pycache__/__init__.cpython-310.pyc and b/vine_hf/__pycache__/__init__.cpython-310.pyc differ
|
|
|
vine_hf/__pycache__/flattening.cpython-310.pyc
CHANGED
|
Binary files a/vine_hf/__pycache__/flattening.cpython-310.pyc and b/vine_hf/__pycache__/flattening.cpython-310.pyc differ
|
|
|
vine_hf/__pycache__/vine_config.cpython-310.pyc
CHANGED
|
Binary files a/vine_hf/__pycache__/vine_config.cpython-310.pyc and b/vine_hf/__pycache__/vine_config.cpython-310.pyc differ
|
|
|
vine_hf/__pycache__/vine_model.cpython-310.pyc
CHANGED
|
Binary files a/vine_hf/__pycache__/vine_model.cpython-310.pyc and b/vine_hf/__pycache__/vine_model.cpython-310.pyc differ
|
|
|
vine_hf/__pycache__/vine_pipeline.cpython-310.pyc
CHANGED
|
Binary files a/vine_hf/__pycache__/vine_pipeline.cpython-310.pyc and b/vine_hf/__pycache__/vine_pipeline.cpython-310.pyc differ
|
|
|
vine_hf/__pycache__/vis_utils.cpython-310.pyc
CHANGED
|
Binary files a/vine_hf/__pycache__/vis_utils.cpython-310.pyc and b/vine_hf/__pycache__/vis_utils.cpython-310.pyc differ
|
|
|
vine_hf/vine_model.py
CHANGED
|
@@ -388,6 +388,24 @@ class VineModel(PreTrainedModel):
|
|
| 388 |
batched_binary_kws = [list(binary_keywords)]
|
| 389 |
|
| 390 |
batched_obj_pairs: List[Tuple[int, int, Tuple[int, int]]] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
if object_pairs:
|
| 392 |
for frame_id, frame_masks in masks.items():
|
| 393 |
if frame_id >= num_frames:
|
|
|
|
| 388 |
batched_binary_kws = [list(binary_keywords)]
|
| 389 |
|
| 390 |
batched_obj_pairs: List[Tuple[int, int, Tuple[int, int]]] = []
|
| 391 |
+
|
| 392 |
+
# Auto-generate all object pairs if binary_keywords provided but object_pairs is empty
|
| 393 |
+
if not object_pairs and binary_keywords:
|
| 394 |
+
# Get all unique object IDs across all frames
|
| 395 |
+
all_object_ids = set()
|
| 396 |
+
for frame_masks in masks.values():
|
| 397 |
+
all_object_ids.update(frame_masks.keys())
|
| 398 |
+
|
| 399 |
+
# Generate all bidirectional pairs (i, j) where i != j
|
| 400 |
+
object_pairs = []
|
| 401 |
+
sorted_ids = sorted(all_object_ids)
|
| 402 |
+
for from_oid in sorted_ids:
|
| 403 |
+
for to_oid in sorted_ids:
|
| 404 |
+
if from_oid != to_oid:
|
| 405 |
+
object_pairs.append((from_oid, to_oid))
|
| 406 |
+
|
| 407 |
+
print(f"Auto-generated {len(object_pairs)} bidirectional object pairs for binary relation detection: {object_pairs}")
|
| 408 |
+
|
| 409 |
if object_pairs:
|
| 410 |
for frame_id, frame_masks in masks.items():
|
| 411 |
if frame_id >= num_frames:
|
vine_hf/vine_pipeline.py
CHANGED
|
@@ -125,6 +125,8 @@ class VinePipeline(Pipeline):
|
|
| 125 |
postprocess_kwargs["return_top_k"] = kwargs["return_top_k"]
|
| 126 |
if "self.visualize" in kwargs:
|
| 127 |
postprocess_kwargs["self.visualize"] = kwargs["self.visualize"]
|
|
|
|
|
|
|
| 128 |
|
| 129 |
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
|
| 130 |
|
|
@@ -781,6 +783,9 @@ class VinePipeline(Pipeline):
|
|
| 781 |
if debug_visualizations is None:
|
| 782 |
debug_visualizations = self.debug_visualizations
|
| 783 |
|
|
|
|
|
|
|
|
|
|
| 784 |
vine_frame_sets = render_vine_frame_sets(
|
| 785 |
frames_np,
|
| 786 |
bboxes,
|
|
@@ -788,6 +793,7 @@ class VinePipeline(Pipeline):
|
|
| 788 |
unary_lookup,
|
| 789 |
binary_lookup,
|
| 790 |
visualization_data.get("sam_masks"),
|
|
|
|
| 791 |
)
|
| 792 |
|
| 793 |
vine_visuals: Dict[str, Dict[str, Any]] = {}
|
|
@@ -872,11 +878,27 @@ class VinePipeline(Pipeline):
|
|
| 872 |
"top_categories": [{"label": str, "probability": float}, ...],
|
| 873 |
"top_unary": [{"frame_id": int, "predicate": str, "probability": float}, ...],
|
| 874 |
}
|
|
|
|
|
|
|
|
|
|
| 875 |
}
|
| 876 |
}
|
| 877 |
"""
|
| 878 |
categorical_preds = model_outputs.get("categorical_predictions", {})
|
| 879 |
unary_preds = model_outputs.get("unary_predictions", {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 880 |
|
| 881 |
unary_by_obj: Dict[int, List[Tuple[float, str, int]]] = {}
|
| 882 |
for (frame_id, obj_id), preds in unary_preds.items():
|
|
@@ -886,6 +908,24 @@ class VinePipeline(Pipeline):
|
|
| 886 |
)
|
| 887 |
unary_by_obj.setdefault(obj_id, []).append((prob_val, predicate, frame_id))
|
| 888 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 889 |
objects_summary: Dict[str, Dict[str, Any]] = {}
|
| 890 |
all_obj_ids = set(categorical_preds.keys()) | set(unary_by_obj.keys())
|
| 891 |
|
|
@@ -927,4 +967,10 @@ class VinePipeline(Pipeline):
|
|
| 927 |
"num_objects_detected": len(objects_summary),
|
| 928 |
"objects": objects_summary,
|
| 929 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 930 |
return summary
|
|
|
|
| 125 |
postprocess_kwargs["return_top_k"] = kwargs["return_top_k"]
|
| 126 |
if "self.visualize" in kwargs:
|
| 127 |
postprocess_kwargs["self.visualize"] = kwargs["self.visualize"]
|
| 128 |
+
if "binary_confidence_threshold" in kwargs:
|
| 129 |
+
postprocess_kwargs["binary_confidence_threshold"] = kwargs["binary_confidence_threshold"]
|
| 130 |
|
| 131 |
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
|
| 132 |
|
|
|
|
| 783 |
if debug_visualizations is None:
|
| 784 |
debug_visualizations = self.debug_visualizations
|
| 785 |
|
| 786 |
+
# Get binary confidence threshold from kwargs (default 0.0 means show all)
|
| 787 |
+
binary_confidence_threshold = kwargs.get("binary_confidence_threshold", 0.0)
|
| 788 |
+
|
| 789 |
vine_frame_sets = render_vine_frame_sets(
|
| 790 |
frames_np,
|
| 791 |
bboxes,
|
|
|
|
| 793 |
unary_lookup,
|
| 794 |
binary_lookup,
|
| 795 |
visualization_data.get("sam_masks"),
|
| 796 |
+
binary_confidence_threshold,
|
| 797 |
)
|
| 798 |
|
| 799 |
vine_visuals: Dict[str, Dict[str, Any]] = {}
|
|
|
|
| 878 |
"top_categories": [{"label": str, "probability": float}, ...],
|
| 879 |
"top_unary": [{"frame_id": int, "predicate": str, "probability": float}, ...],
|
| 880 |
}
|
| 881 |
+
},
|
| 882 |
+
"binary_keywords": {
|
| 883 |
+
"<from_id>-<to_id>": {"predicate": str, "confidence": float, "frame_id": int}
|
| 884 |
}
|
| 885 |
}
|
| 886 |
"""
|
| 887 |
categorical_preds = model_outputs.get("categorical_predictions", {})
|
| 888 |
unary_preds = model_outputs.get("unary_predictions", {})
|
| 889 |
+
binary_preds = model_outputs.get("binary_predictions", {})
|
| 890 |
+
|
| 891 |
+
# Debug: Print binary predictions
|
| 892 |
+
print("\n" + "=" * 80)
|
| 893 |
+
print("DEBUG _generate_summary: Binary predictions from model")
|
| 894 |
+
print(f" Type: {type(binary_preds)}")
|
| 895 |
+
print(f" Length: {len(binary_preds) if isinstance(binary_preds, dict) else 'N/A'}")
|
| 896 |
+
print(f" Keys (first 20): {list(binary_preds.keys())[:20] if isinstance(binary_preds, dict) else 'N/A'}")
|
| 897 |
+
if isinstance(binary_preds, dict) and len(binary_preds) > 0:
|
| 898 |
+
print(f" Sample entries:")
|
| 899 |
+
for i, (key, val) in enumerate(list(binary_preds.items())[:5]):
|
| 900 |
+
print(f" {key}: {val}")
|
| 901 |
+
print("=" * 80 + "\n")
|
| 902 |
|
| 903 |
unary_by_obj: Dict[int, List[Tuple[float, str, int]]] = {}
|
| 904 |
for (frame_id, obj_id), preds in unary_preds.items():
|
|
|
|
| 908 |
)
|
| 909 |
unary_by_obj.setdefault(obj_id, []).append((prob_val, predicate, frame_id))
|
| 910 |
|
| 911 |
+
# Process binary predictions
|
| 912 |
+
binary_keywords: Dict[str, Dict[str, Any]] = {}
|
| 913 |
+
for (frame_id, (from_id, to_id)), preds in binary_preds.items():
|
| 914 |
+
for prob, predicate in preds:
|
| 915 |
+
prob_val = (
|
| 916 |
+
float(prob.detach().cpu()) if torch.is_tensor(prob) else float(prob)
|
| 917 |
+
)
|
| 918 |
+
pair_key = f"{from_id}-{to_id}"
|
| 919 |
+
# Keep only the highest confidence prediction for each pair
|
| 920 |
+
if pair_key not in binary_keywords or prob_val > binary_keywords[pair_key]["confidence"]:
|
| 921 |
+
binary_keywords[pair_key] = {
|
| 922 |
+
"predicate": predicate,
|
| 923 |
+
"confidence": prob_val,
|
| 924 |
+
"frame_id": int(frame_id),
|
| 925 |
+
"from_id": int(from_id),
|
| 926 |
+
"to_id": int(to_id),
|
| 927 |
+
}
|
| 928 |
+
|
| 929 |
objects_summary: Dict[str, Dict[str, Any]] = {}
|
| 930 |
all_obj_ids = set(categorical_preds.keys()) | set(unary_by_obj.keys())
|
| 931 |
|
|
|
|
| 967 |
"num_objects_detected": len(objects_summary),
|
| 968 |
"objects": objects_summary,
|
| 969 |
}
|
| 970 |
+
|
| 971 |
+
# Add binary keywords to summary if any exist
|
| 972 |
+
if binary_keywords:
|
| 973 |
+
summary["binary_keywords"] = binary_keywords
|
| 974 |
+
print(f"\nDEBUG: Added {len(binary_keywords)} binary keywords to summary")
|
| 975 |
+
|
| 976 |
return summary
|
vine_hf/vis_utils.py
CHANGED
|
@@ -330,6 +330,7 @@ def render_vine_frame_sets(
|
|
| 330 |
unary_lookup: Dict[int, Dict[int, List[Tuple[float, str]]]],
|
| 331 |
binary_lookup: Dict[int, List[Tuple[Tuple[int, int], List[Tuple[float, str]]]]],
|
| 332 |
masks: Union[Dict[int, Dict[int, Union[np.ndarray, torch.Tensor]]], List, None] = None,
|
|
|
|
| 333 |
) -> Dict[str, List[np.ndarray]]:
|
| 334 |
frame_groups: Dict[str, List[np.ndarray]] = {
|
| 335 |
"object": [],
|
|
@@ -403,6 +404,9 @@ def render_vine_frame_sets(
|
|
| 403 |
anchor, direction = _label_anchor_and_direction(bbox, "bottom")
|
| 404 |
_draw_label_block(all_bgr, unary_lines, anchor, _object_color_bgr(obj_id), direction=direction)
|
| 405 |
|
|
|
|
|
|
|
|
|
|
| 406 |
for obj_pair, relation_preds in binary_lookup.get(frame_idx, []):
|
| 407 |
if len(obj_pair) != 2 or not relation_preds:
|
| 408 |
continue
|
|
@@ -411,17 +415,33 @@ def render_vine_frame_sets(
|
|
| 411 |
obj_bbox = bbox_lookup.get(obj_id)
|
| 412 |
if not subj_bbox or not obj_bbox:
|
| 413 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
start, end = relation_line(subj_bbox, obj_bbox)
|
| 415 |
color = tuple(int(c) for c in np.clip(
|
| 416 |
(np.array(_object_color_bgr(subj_id), dtype=np.float32) +
|
| 417 |
np.array(_object_color_bgr(obj_id), dtype=np.float32)) / 2.0,
|
| 418 |
0, 255
|
| 419 |
))
|
| 420 |
-
prob, relation = relation_preds[0]
|
| 421 |
label_text = f"{relation} {prob:.2f}"
|
| 422 |
mid_point = (int((start[0] + end[0]) / 2), int((start[1] + end[1]) / 2))
|
| 423 |
-
|
| 424 |
-
cv2.
|
|
|
|
| 425 |
_draw_centered_label(binary_bgr, label_text, mid_point, color)
|
| 426 |
_draw_centered_label(all_bgr, label_text, mid_point, color)
|
| 427 |
|
|
@@ -440,6 +460,7 @@ def render_vine_frames(
|
|
| 440 |
unary_lookup: Dict[int, Dict[int, List[Tuple[float, str]]]],
|
| 441 |
binary_lookup: Dict[int, List[Tuple[Tuple[int, int], List[Tuple[float, str]]]]],
|
| 442 |
masks: Union[Dict[int, Dict[int, Union[np.ndarray, torch.Tensor]]], List, None] = None,
|
|
|
|
| 443 |
) -> List[np.ndarray]:
|
| 444 |
return render_vine_frame_sets(
|
| 445 |
frames,
|
|
@@ -448,6 +469,7 @@ def render_vine_frames(
|
|
| 448 |
unary_lookup,
|
| 449 |
binary_lookup,
|
| 450 |
masks,
|
|
|
|
| 451 |
).get("all", [])
|
| 452 |
|
| 453 |
def color_for_cate_correctness(obj_pred_dict, gt_labels, topk_object):
|
|
|
|
| 330 |
unary_lookup: Dict[int, Dict[int, List[Tuple[float, str]]]],
|
| 331 |
binary_lookup: Dict[int, List[Tuple[Tuple[int, int], List[Tuple[float, str]]]]],
|
| 332 |
masks: Union[Dict[int, Dict[int, Union[np.ndarray, torch.Tensor]]], List, None] = None,
|
| 333 |
+
binary_confidence_threshold: float = 0.0,
|
| 334 |
) -> Dict[str, List[np.ndarray]]:
|
| 335 |
frame_groups: Dict[str, List[np.ndarray]] = {
|
| 336 |
"object": [],
|
|
|
|
| 404 |
anchor, direction = _label_anchor_and_direction(bbox, "bottom")
|
| 405 |
_draw_label_block(all_bgr, unary_lines, anchor, _object_color_bgr(obj_id), direction=direction)
|
| 406 |
|
| 407 |
+
# First pass: collect all pairs above threshold and deduplicate bidirectional pairs
|
| 408 |
+
pairs_to_draw = {} # (min_id, max_id) -> (subj_id, obj_id, prob, relation)
|
| 409 |
+
|
| 410 |
for obj_pair, relation_preds in binary_lookup.get(frame_idx, []):
|
| 411 |
if len(obj_pair) != 2 or not relation_preds:
|
| 412 |
continue
|
|
|
|
| 415 |
obj_bbox = bbox_lookup.get(obj_id)
|
| 416 |
if not subj_bbox or not obj_bbox:
|
| 417 |
continue
|
| 418 |
+
prob, relation = relation_preds[0]
|
| 419 |
+
# Filter by confidence threshold
|
| 420 |
+
if prob < binary_confidence_threshold:
|
| 421 |
+
continue
|
| 422 |
+
|
| 423 |
+
# Create canonical key (smaller_id, larger_id) for deduplication
|
| 424 |
+
pair_key = (min(subj_id, obj_id), max(subj_id, obj_id))
|
| 425 |
+
|
| 426 |
+
# Keep the higher confidence direction
|
| 427 |
+
if pair_key not in pairs_to_draw or prob > pairs_to_draw[pair_key][2]:
|
| 428 |
+
pairs_to_draw[pair_key] = (subj_id, obj_id, prob, relation)
|
| 429 |
+
|
| 430 |
+
# Second pass: draw the selected pairs
|
| 431 |
+
for subj_id, obj_id, prob, relation in pairs_to_draw.values():
|
| 432 |
+
subj_bbox = bbox_lookup.get(subj_id)
|
| 433 |
+
obj_bbox = bbox_lookup.get(obj_id)
|
| 434 |
start, end = relation_line(subj_bbox, obj_bbox)
|
| 435 |
color = tuple(int(c) for c in np.clip(
|
| 436 |
(np.array(_object_color_bgr(subj_id), dtype=np.float32) +
|
| 437 |
np.array(_object_color_bgr(obj_id), dtype=np.float32)) / 2.0,
|
| 438 |
0, 255
|
| 439 |
))
|
|
|
|
| 440 |
label_text = f"{relation} {prob:.2f}"
|
| 441 |
mid_point = (int((start[0] + end[0]) / 2), int((start[1] + end[1]) / 2))
|
| 442 |
+
# Draw arrowed lines showing direction from subject to object (smaller arrow tip)
|
| 443 |
+
cv2.arrowedLine(binary_bgr, start, end, color, 6, cv2.LINE_AA, tipLength=0.05)
|
| 444 |
+
cv2.arrowedLine(all_bgr, start, end, color, 6, cv2.LINE_AA, tipLength=0.05)
|
| 445 |
_draw_centered_label(binary_bgr, label_text, mid_point, color)
|
| 446 |
_draw_centered_label(all_bgr, label_text, mid_point, color)
|
| 447 |
|
|
|
|
| 460 |
unary_lookup: Dict[int, Dict[int, List[Tuple[float, str]]]],
|
| 461 |
binary_lookup: Dict[int, List[Tuple[Tuple[int, int], List[Tuple[float, str]]]]],
|
| 462 |
masks: Union[Dict[int, Dict[int, Union[np.ndarray, torch.Tensor]]], List, None] = None,
|
| 463 |
+
binary_confidence_threshold: float = 0.0,
|
| 464 |
) -> List[np.ndarray]:
|
| 465 |
return render_vine_frame_sets(
|
| 466 |
frames,
|
|
|
|
| 469 |
unary_lookup,
|
| 470 |
binary_lookup,
|
| 471 |
masks,
|
| 472 |
+
binary_confidence_threshold,
|
| 473 |
).get("all", [])
|
| 474 |
|
| 475 |
def color_for_cate_correctness(obj_pred_dict, gt_labels, topk_object):
|