Spaces:
Configuration error
Configuration error
| # 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘 | |
| # MiniMind Config | |
| # 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘 | |
| from transformers import PretrainedConfig | |
| class MiniMindConfig(PretrainedConfig): | |
| model_type = "minimind" | |
| def __init__( | |
| self, | |
| dropout: float = 0.0, | |
| bos_token_id: int = 1, | |
| eos_token_id: int = 2, | |
| hidden_act: str = 'silu', | |
| hidden_size: int = 512, | |
| intermediate_size: int = None, | |
| max_position_embeddings: int = 32768, | |
| num_attention_heads: int = 8, | |
| num_hidden_layers: int = 8, | |
| num_key_value_heads: int = 2, | |
| vocab_size: int = 6400, | |
| rms_norm_eps: float = 1e-05, | |
| rope_theta: int = 1000000.0, | |
| flash_attn: bool = True, | |
| #################################################### | |
| # Here are the specific configurations of MOE | |
| # When use_moe is false, the following is invalid | |
| #################################################### | |
| use_moe: bool = False, | |
| num_experts_per_tok: int = 2, | |
| n_routed_experts: int = 4, | |
| n_shared_experts: int = 1, | |
| scoring_func: str = 'softmax', | |
| aux_loss_alpha: float = 0.1, | |
| seq_aux: bool = True, | |
| norm_topk_prob: bool = True, | |
| **kwargs | |
| ): | |
| super().__init__(**kwargs) | |
| self.dropout = dropout | |
| self.bos_token_id = bos_token_id | |
| self.eos_token_id = eos_token_id | |
| self.hidden_act = hidden_act | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.num_attention_heads = num_attention_heads | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_key_value_heads = num_key_value_heads | |
| self.vocab_size = vocab_size | |
| self.rms_norm_eps = rms_norm_eps | |
| self.rope_theta = rope_theta | |
| self.flash_attn = flash_attn | |
| #################################################### | |
| # Here are the specific configurations of MOE | |
| # When use_moe is false, the following is invalid | |
| #################################################### | |
| self.use_moe = use_moe | |
| self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量 | |
| self.n_routed_experts = n_routed_experts # 总的专家数量 | |
| self.n_shared_experts = n_shared_experts # 共享专家 | |
| self.scoring_func = scoring_func # 评分函数,默认为'softmax' | |
| self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数 | |
| self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失 | |
| self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率 | |
| # 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘 | |
| # MiniMind Model | |
| # 📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘📘 | |
| import math | |
| import torch | |
| from torch import nn | |
| from transformers.activations import ACT2FN | |
| from typing import Optional, Tuple, List, Union | |
| import torch.nn.functional as F | |
| from transformers import PreTrainedModel, GenerationMixin, PretrainedConfig | |
| from transformers.modeling_outputs import CausalLMOutputWithPast | |
| class RMSNorm(torch.nn.Module): | |
| def __init__(self, dim: int, eps: float = 1e-5): | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def _norm(self, x): | |
| return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
| def forward(self, x): | |
| return self.weight * self._norm(x.float()).type_as(x) | |
| def precompute_freqs_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6): | |
| freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
| t = torch.arange(end, device=freqs.device) | |
| freqs = torch.outer(t, freqs).float() | |
| freqs_cos = torch.cat([torch.cos(freqs), torch.cos(freqs)], dim=-1) | |
| freqs_sin = torch.cat([torch.sin(freqs), torch.sin(freqs)], dim=-1) | |
| return freqs_cos, freqs_sin | |
| def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
| def rotate_half(x): | |
| return torch.cat((-x[..., x.shape[-1] // 2:], x[..., : x.shape[-1] // 2]), dim=-1) | |
| q_embed = (q * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(q) * sin.unsqueeze(unsqueeze_dim)) | |
| k_embed = (k * cos.unsqueeze(unsqueeze_dim)) + (rotate_half(k) * sin.unsqueeze(unsqueeze_dim)) | |
| return q_embed, k_embed | |
| def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| """torch.repeat_interleave(x, dim=2, repeats=n_rep)""" | |
| bs, slen, num_key_value_heads, head_dim = x.shape | |
| if n_rep == 1: | |
| return x | |
| return ( | |
| x[:, :, :, None, :] | |
| .expand(bs, slen, num_key_value_heads, n_rep, head_dim) | |
| .reshape(bs, slen, num_key_value_heads * n_rep, head_dim) | |
| ) | |
| class Attention(nn.Module): | |
| def __init__(self, args: MiniMindConfig): | |
| super().__init__() | |
| self.num_key_value_heads = args.num_attention_heads if args.num_key_value_heads is None else args.num_key_value_heads | |
| assert args.num_attention_heads % self.num_key_value_heads == 0 | |
| self.n_local_heads = args.num_attention_heads | |
| self.n_local_kv_heads = self.num_key_value_heads | |
| self.n_rep = self.n_local_heads // self.n_local_kv_heads | |
| self.head_dim = args.hidden_size // args.num_attention_heads | |
| self.q_proj = nn.Linear(args.hidden_size, args.num_attention_heads * self.head_dim, bias=False) | |
| self.k_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
| self.v_proj = nn.Linear(args.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
| self.o_proj = nn.Linear(args.num_attention_heads * self.head_dim, args.hidden_size, bias=False) | |
| self.attn_dropout = nn.Dropout(args.dropout) | |
| self.resid_dropout = nn.Dropout(args.dropout) | |
| self.dropout = args.dropout | |
| self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn | |
| # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") | |
| def forward(self, | |
| x: torch.Tensor, | |
| position_embeddings: Tuple[torch.Tensor, torch.Tensor], # 修改为接收cos和sin | |
| past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| use_cache=False, | |
| attention_mask: Optional[torch.Tensor] = None): | |
| bsz, seq_len, _ = x.shape | |
| xq, xk, xv = self.q_proj(x), self.k_proj(x), self.v_proj(x) | |
| xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) | |
| xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) | |
| xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) | |
| cos, sin = position_embeddings | |
| xq, xk = apply_rotary_pos_emb(xq, xk, cos[:seq_len], sin[:seq_len]) | |
| # kv_cache实现 | |
| if past_key_value is not None: | |
| xk = torch.cat([past_key_value[0], xk], dim=1) | |
| xv = torch.cat([past_key_value[1], xv], dim=1) | |
| past_kv = (xk, xv) if use_cache else None | |
| xq, xk, xv = ( | |
| xq.transpose(1, 2), | |
| repeat_kv(xk, self.n_rep).transpose(1, 2), | |
| repeat_kv(xv, self.n_rep).transpose(1, 2) | |
| ) | |
| if self.flash and seq_len != 1: | |
| dropout_p = self.dropout if self.training else 0.0 | |
| attn_mask = None | |
| if attention_mask is not None: | |
| attn_mask = attention_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seq_len, -1) | |
| attn_mask = attn_mask.bool() if attention_mask is not None else None | |
| output = F.scaled_dot_product_attention(xq, xk, xv, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=True) | |
| else: | |
| scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim) | |
| scores = scores + torch.triu( | |
| torch.full((seq_len, seq_len), float("-inf"), device=scores.device), | |
| diagonal=1 | |
| ).unsqueeze(0).unsqueeze(0) # scores+mask | |
| if attention_mask is not None: | |
| extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -1e9 | |
| scores = scores + extended_attention_mask | |
| scores = F.softmax(scores.float(), dim=-1).type_as(xq) | |
| scores = self.attn_dropout(scores) | |
| output = scores @ xv | |
| output = output.transpose(1, 2).reshape(bsz, seq_len, -1) | |
| output = self.resid_dropout(self.o_proj(output)) | |
| return output, past_kv | |
| class FeedForward(nn.Module): | |
| def __init__(self, config: MiniMindConfig): | |
| super().__init__() | |
| if config.intermediate_size is None: | |
| intermediate_size = int(config.hidden_size * 8 / 3) | |
| config.intermediate_size = 64 * ((intermediate_size + 64 - 1) // 64) | |
| self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
| self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
| self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
| self.dropout = nn.Dropout(config.dropout) | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| def forward(self, x): | |
| return self.dropout(self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))) | |
| class MoEGate(nn.Module): | |
| def __init__(self, config: MiniMindConfig): | |
| super().__init__() | |
| self.config = config | |
| self.top_k = config.num_experts_per_tok | |
| self.n_routed_experts = config.n_routed_experts | |
| self.scoring_func = config.scoring_func | |
| self.alpha = config.aux_loss_alpha | |
| self.seq_aux = config.seq_aux | |
| self.norm_topk_prob = config.norm_topk_prob | |
| self.gating_dim = config.hidden_size | |
| self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) | |
| self.reset_parameters() | |
| def reset_parameters(self) -> None: | |
| import torch.nn.init as init | |
| init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | |
| def forward(self, hidden_states): | |
| bsz, seq_len, h = hidden_states.shape | |
| hidden_states = hidden_states.view(-1, h) | |
| logits = F.linear(hidden_states, self.weight, None) | |
| if self.scoring_func == 'softmax': | |
| scores = logits.softmax(dim=-1) | |
| else: | |
| raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') | |
| topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) | |
| if self.top_k > 1 and self.norm_topk_prob: | |
| denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 | |
| topk_weight = topk_weight / denominator | |
| if self.training and self.alpha > 0.0: | |
| scores_for_aux = scores | |
| aux_topk = self.top_k | |
| topk_idx_for_aux_loss = topk_idx.view(bsz, -1) | |
| if self.seq_aux: | |
| scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) | |
| ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) | |
| ce.scatter_add_(1, topk_idx_for_aux_loss, | |
| torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_( | |
| seq_len * aux_topk / self.n_routed_experts) | |
| aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha | |
| else: | |
| mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) | |
| ce = mask_ce.float().mean(0) | |
| Pi = scores_for_aux.mean(0) | |
| fi = ce * self.n_routed_experts | |
| aux_loss = (Pi * fi).sum() * self.alpha | |
| else: | |
| aux_loss = 0 | |
| return topk_idx, topk_weight, aux_loss | |
| class MOEFeedForward(nn.Module): | |
| def __init__(self, config: MiniMindConfig): | |
| super().__init__() | |
| self.config = config | |
| self.experts = nn.ModuleList([ | |
| FeedForward(config) | |
| for _ in range(config.n_routed_experts) | |
| ]) | |
| self.gate = MoEGate(config) | |
| if config.n_shared_experts > 0: | |
| self.shared_experts = nn.ModuleList([ | |
| FeedForward(config) | |
| for _ in range(config.n_shared_experts) | |
| ]) | |
| def forward(self, x): | |
| identity = x | |
| orig_shape = x.shape | |
| bsz, seq_len, _ = x.shape | |
| # 使用门控机制选择专家 | |
| topk_idx, topk_weight, aux_loss = self.gate(x) | |
| x = x.view(-1, x.shape[-1]) | |
| flat_topk_idx = topk_idx.view(-1) | |
| if self.training: | |
| x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0) | |
| y = torch.empty_like(x, dtype=torch.float16) | |
| for i, expert in enumerate(self.experts): | |
| y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致 | |
| y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) | |
| y = y.view(*orig_shape) | |
| else: | |
| y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) | |
| if self.config.n_shared_experts > 0: | |
| for expert in self.shared_experts: | |
| y = y + expert(identity) | |
| self.aux_loss = aux_loss | |
| return y | |
| def moe_infer(self, x, flat_expert_indices, flat_expert_weights): | |
| expert_cache = torch.zeros_like(x) | |
| idxs = flat_expert_indices.argsort() | |
| tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) | |
| token_idxs = idxs // self.config.num_experts_per_tok | |
| # 当tokens_per_expert = [6, 15, 20, 26],tokens_per_expert.shape[0]即为专家数量(此时为4) | |
| # 且token_idxs = [3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...] 时 | |
| # 意味token_idxs[:6] -> [3, 7, 19, 21, 24, 25]这6个位置属于专家0处理的token(每个token有可能被多个专家处理,这取决于num_experts_per_tok) | |
| # 接下来9个位置token_idxs[6:15] -> [4, 5, 6, 10, 11, 12...]属于专家1处理的token...依此类推 | |
| for i, end_idx in enumerate(tokens_per_expert): | |
| start_idx = 0 if i == 0 else tokens_per_expert[i - 1] | |
| if start_idx == end_idx: | |
| continue | |
| expert = self.experts[i] | |
| exp_token_idx = token_idxs[start_idx:end_idx] | |
| expert_tokens = x[exp_token_idx] | |
| expert_out = expert(expert_tokens).to(expert_cache.dtype) | |
| expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) | |
| expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out) | |
| return expert_cache | |
| class MiniMindBlock(nn.Module): | |
| def __init__(self, layer_id: int, config: MiniMindConfig): | |
| super().__init__() | |
| self.num_attention_heads = config.num_attention_heads | |
| self.hidden_size = config.hidden_size | |
| self.head_dim = config.hidden_size // config.num_attention_heads | |
| self.self_attn = Attention(config) | |
| self.layer_id = layer_id | |
| self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.mlp = FeedForward(config) if not config.use_moe else MOEFeedForward(config) | |
| def forward(self, hidden_states, position_embeddings, past_key_value=None, use_cache=False, attention_mask=None): | |
| residual = hidden_states | |
| hidden_states, present_key_value = self.self_attn( | |
| self.input_layernorm(hidden_states), position_embeddings, | |
| past_key_value, use_cache, attention_mask | |
| ) | |
| hidden_states += residual | |
| hidden_states = hidden_states + self.mlp(self.post_attention_layernorm(hidden_states)) | |
| return hidden_states, present_key_value | |
| class MiniMindModel(nn.Module): | |
| def __init__(self, config: MiniMindConfig): | |
| super().__init__() | |
| self.config = config | |
| self.vocab_size, self.num_hidden_layers = config.vocab_size, config.num_hidden_layers | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.dropout) | |
| self.layers = nn.ModuleList([MiniMindBlock(l, config) for l in range(self.num_hidden_layers)]) | |
| self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| freqs_cos, freqs_sin = precompute_freqs_cis(dim=config.hidden_size // config.num_attention_heads, | |
| end=config.max_position_embeddings, theta=config.rope_theta) | |
| self.register_buffer("freqs_cos", freqs_cos, persistent=False) | |
| self.register_buffer("freqs_sin", freqs_sin, persistent=False) | |
| def forward(self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, | |
| use_cache: bool = False, | |
| **kwargs): | |
| batch_size, seq_length = input_ids.shape | |
| past_key_values = past_key_values or [None] * len(self.layers) | |
| start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0 | |
| hidden_states = self.dropout(self.embed_tokens(input_ids)) | |
| position_embeddings = ( | |
| self.freqs_cos[start_pos:start_pos + seq_length], | |
| self.freqs_sin[start_pos:start_pos + seq_length] | |
| ) | |
| presents = [] | |
| for layer_idx, (layer, past_key_value) in enumerate(zip(self.layers, past_key_values)): | |
| hidden_states, present = layer( | |
| hidden_states, | |
| position_embeddings, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| attention_mask=attention_mask | |
| ) | |
| presents.append(present) | |
| hidden_states = self.norm(hidden_states) | |
| aux_loss = sum( | |
| layer.mlp.aux_loss | |
| for layer in self.layers | |
| if isinstance(layer.mlp, MOEFeedForward) | |
| ) | |
| return hidden_states, presents, aux_loss | |
| class MiniMindForCausalLM(PreTrainedModel, GenerationMixin): | |
| config_class = MiniMindConfig | |
| def __init__(self, config: MiniMindConfig = None): | |
| self.config = config or MiniMindConfig() | |
| super().__init__(self.config) | |
| self.model = MiniMindModel(self.config) | |
| self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=False) | |
| self.model.embed_tokens.weight = self.lm_head.weight | |
| self.OUT = CausalLMOutputWithPast() | |
| def forward(self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, | |
| use_cache: bool = False, | |
| logits_to_keep: Union[int, torch.Tensor] = 0, | |
| **args): | |
| h, past_kvs, aux_loss = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| past_key_values=past_key_values, | |
| use_cache=use_cache, | |
| **args | |
| ) | |
| slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | |
| logits = self.lm_head(h[:, slice_indices, :]) | |
| self.OUT.__setitem__('last_hidden_state', h) | |
| self.OUT.__setitem__('logits', logits) | |
| self.OUT.__setitem__('aux_loss', aux_loss) | |
| self.OUT.__setitem__('past_key_values', past_kvs) | |
| return self.OUT | |