Spaces:
Configuration error
Configuration error
| import os | |
| import sys | |
| __package__ = "scripts" | |
| sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) | |
| import torch | |
| import warnings | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM | |
| from model.model_minimind import MiniMindConfig, MiniMindForCausalLM | |
| warnings.filterwarnings('ignore', category=UserWarning) | |
| # MoE模型需使用此函数转换 | |
| def convert_torch2transformers_minimind(torch_path, transformers_path, dtype=torch.bfloat16): | |
| MiniMindConfig.register_for_auto_class() | |
| MiniMindForCausalLM.register_for_auto_class("AutoModelForCausalLM") | |
| lm_model = MiniMindForCausalLM(lm_config) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| state_dict = torch.load(torch_path, map_location=device) | |
| lm_model.load_state_dict(state_dict, strict=False) | |
| lm_model = lm_model.to(dtype) # 转换模型权重精度 | |
| model_params = sum(p.numel() for p in lm_model.parameters() if p.requires_grad) | |
| print(f'模型参数: {model_params / 1e6} 百万 = {model_params / 1e9} B (Billion)') | |
| lm_model.save_pretrained(transformers_path, safe_serialization=False) | |
| tokenizer = AutoTokenizer.from_pretrained('../model/') | |
| tokenizer.save_pretrained(transformers_path) | |
| print(f"模型已保存为 Transformers-MiniMind 格式: {transformers_path}") | |
| # LlamaForCausalLM结构兼容第三方生态 | |
| def convert_torch2transformers_llama(torch_path, transformers_path, dtype=torch.bfloat16): | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| state_dict = torch.load(torch_path, map_location=device) | |
| llama_config = LlamaConfig( | |
| vocab_size=lm_config.vocab_size, | |
| hidden_size=lm_config.hidden_size, | |
| intermediate_size=64 * ((int(lm_config.hidden_size * 8 / 3) + 64 - 1) // 64), | |
| num_hidden_layers=lm_config.num_hidden_layers, | |
| num_attention_heads=lm_config.num_attention_heads, | |
| num_key_value_heads=lm_config.num_key_value_heads, | |
| max_position_embeddings=lm_config.max_seq_len, | |
| rms_norm_eps=lm_config.rms_norm_eps, | |
| rope_theta=lm_config.rope_theta, | |
| ) | |
| llama_model = LlamaForCausalLM(llama_config) | |
| llama_model.load_state_dict(state_dict, strict=False) | |
| llama_model = llama_model.to(dtype) # 转换模型权重精度 | |
| llama_model.save_pretrained(transformers_path) | |
| model_params = sum(p.numel() for p in llama_model.parameters() if p.requires_grad) | |
| print(f'模型参数: {model_params / 1e6} 百万 = {model_params / 1e9} B (Billion)') | |
| tokenizer = AutoTokenizer.from_pretrained('../model/') | |
| tokenizer.save_pretrained(transformers_path) | |
| print(f"模型已保存为 Transformers-Llama 格式: {transformers_path}") | |
| def convert_transformers2torch(transformers_path, torch_path): | |
| model = AutoModelForCausalLM.from_pretrained(transformers_path, trust_remote_code=True) | |
| torch.save(model.state_dict(), torch_path) | |
| print(f"模型已保存为 PyTorch 格式: {torch_path}") | |
| if __name__ == '__main__': | |
| lm_config = MiniMindConfig(hidden_size=768, num_hidden_layers=16, max_seq_len=8192, use_moe=False) | |
| torch_path = f"../out/full_sft_{lm_config.hidden_size}{'_moe' if lm_config.use_moe else ''}.pth" | |
| transformers_path = '../MiniMind2' | |
| convert_torch2transformers_minimind(torch_path, transformers_path) | |
| # # # convert transformers to torch model | |
| # # convert_transformers2torch(transformers_path, torch_path) | |