fix: add timeout protection and optimize inference for HF Spaces
Browse files- test_constrained_model.py +117 -51
test_constrained_model.py
CHANGED
|
@@ -14,70 +14,136 @@ from typing import Dict, List
|
|
| 14 |
import time
|
| 15 |
|
| 16 |
def load_trained_model():
|
| 17 |
-
"""Load our
|
| 18 |
-
print("π Loading SmolLM3-3B
|
| 19 |
|
| 20 |
# Load base model
|
| 21 |
base_model_name = "HuggingFaceTB/SmolLM3-3B"
|
| 22 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 23 |
-
if tokenizer.pad_token is None:
|
| 24 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def constrained_json_generate(model, tokenizer, prompt: str, schema: Dict, max_attempts: int = 3):
|
| 40 |
"""Generate JSON with multiple attempts and validation."""
|
| 41 |
device = next(model.parameters()).device
|
| 42 |
|
| 43 |
for attempt in range(max_attempts):
|
| 44 |
-
# Generate with different temperatures for diversity
|
| 45 |
-
temperature = 0.1 + (attempt * 0.1)
|
| 46 |
-
|
| 47 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 48 |
-
|
| 49 |
-
with torch.no_grad():
|
| 50 |
-
outputs = model.generate(
|
| 51 |
-
**inputs,
|
| 52 |
-
max_new_tokens=200,
|
| 53 |
-
temperature=temperature,
|
| 54 |
-
do_sample=True,
|
| 55 |
-
top_p=0.9,
|
| 56 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 57 |
-
eos_token_id=tokenizer.eos_token_id
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
# Decode response
|
| 61 |
-
response = tokenizer.decode(
|
| 62 |
-
outputs[0][inputs['input_ids'].shape[1]:],
|
| 63 |
-
skip_special_tokens=True
|
| 64 |
-
).strip()
|
| 65 |
-
|
| 66 |
-
# Try to parse as JSON
|
| 67 |
try:
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
if attempt == max_attempts - 1:
|
| 78 |
-
return
|
|
|
|
| 79 |
|
| 80 |
-
return
|
| 81 |
|
| 82 |
def create_test_schemas():
|
| 83 |
"""Create the test schemas we're evaluating against."""
|
|
|
|
| 14 |
import time
|
| 15 |
|
| 16 |
def load_trained_model():
|
| 17 |
+
"""Load our model - tries fine-tuned first, falls back to base model."""
|
| 18 |
+
print("π Loading SmolLM3-3B Function-Calling Agent...")
|
| 19 |
|
| 20 |
# Load base model
|
| 21 |
base_model_name = "HuggingFaceTB/SmolLM3-3B"
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
try:
|
| 24 |
+
print("π Loading tokenizer...")
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 26 |
+
if tokenizer.pad_token is None:
|
| 27 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 28 |
+
|
| 29 |
+
print("π Loading base model...")
|
| 30 |
+
# Use smaller data type for Hugging Face Spaces
|
| 31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
+
base_model_name,
|
| 33 |
+
torch_dtype=torch.float16, # Use float16 for better memory usage
|
| 34 |
+
device_map="auto",
|
| 35 |
+
low_cpu_mem_usage=True # Reduce memory usage during loading
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Try to load fine-tuned adapter from Hugging Face Hub
|
| 39 |
+
try:
|
| 40 |
+
print("π Attempting to load fine-tuned adapter...")
|
| 41 |
+
# from peft import PeftModel # Uncomment when adapter is available
|
| 42 |
+
# model = PeftModel.from_pretrained(model, "jlov7/SmolLM3-Function-Calling-LoRA")
|
| 43 |
+
# model = model.merge_and_unload()
|
| 44 |
+
# print("β
Fine-tuned model loaded successfully!")
|
| 45 |
+
print("π§ Fine-tuned adapter not yet available - using base model with optimized prompting")
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"β οΈ Could not load fine-tuned adapter: {e}")
|
| 48 |
+
print("π§ Using base model with optimized prompting")
|
| 49 |
+
|
| 50 |
+
print("β
Model loaded successfully")
|
| 51 |
+
return model, tokenizer
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"β Error loading model: {e}")
|
| 55 |
+
raise
|
| 56 |
|
| 57 |
def constrained_json_generate(model, tokenizer, prompt: str, schema: Dict, max_attempts: int = 3):
|
| 58 |
"""Generate JSON with multiple attempts and validation."""
|
| 59 |
device = next(model.parameters()).device
|
| 60 |
|
| 61 |
for attempt in range(max_attempts):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
try:
|
| 63 |
+
# Generate with different temperatures for diversity
|
| 64 |
+
temperature = 0.1 + (attempt * 0.1)
|
| 65 |
+
|
| 66 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 67 |
+
|
| 68 |
+
# Simple timeout protection using threading (cross-platform)
|
| 69 |
+
import threading
|
| 70 |
+
|
| 71 |
+
result = [None]
|
| 72 |
+
error = [None]
|
| 73 |
+
|
| 74 |
+
def generate_with_timeout():
|
| 75 |
+
try:
|
| 76 |
+
with torch.no_grad():
|
| 77 |
+
outputs = model.generate(
|
| 78 |
+
**inputs,
|
| 79 |
+
max_new_tokens=100, # Reduced for faster generation
|
| 80 |
+
temperature=temperature,
|
| 81 |
+
do_sample=True,
|
| 82 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 83 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 84 |
+
num_return_sequences=1,
|
| 85 |
+
use_cache=True
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Extract generated text
|
| 89 |
+
generated_ids = outputs[0][inputs['input_ids'].shape[1]:]
|
| 90 |
+
response = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
|
| 91 |
+
|
| 92 |
+
# Try to extract JSON from response
|
| 93 |
+
if "{" in response and "}" in response:
|
| 94 |
+
# Find the first complete JSON object
|
| 95 |
+
start = response.find("{")
|
| 96 |
+
bracket_count = 0
|
| 97 |
+
end = start
|
| 98 |
+
|
| 99 |
+
for i, char in enumerate(response[start:], start):
|
| 100 |
+
if char == "{":
|
| 101 |
+
bracket_count += 1
|
| 102 |
+
elif char == "}":
|
| 103 |
+
bracket_count -= 1
|
| 104 |
+
if bracket_count == 0:
|
| 105 |
+
end = i + 1
|
| 106 |
+
break
|
| 107 |
+
|
| 108 |
+
json_str = response[start:end]
|
| 109 |
+
result[0] = json_str
|
| 110 |
+
else:
|
| 111 |
+
result[0] = response
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
error[0] = str(e)
|
| 115 |
+
|
| 116 |
+
# Start generation in a separate thread with timeout
|
| 117 |
+
thread = threading.Thread(target=generate_with_timeout)
|
| 118 |
+
thread.daemon = True
|
| 119 |
+
thread.start()
|
| 120 |
+
thread.join(timeout=20) # 20-second timeout
|
| 121 |
+
|
| 122 |
+
if thread.is_alive():
|
| 123 |
+
return "", False, f"Generation timed out (attempt {attempt + 1})"
|
| 124 |
+
|
| 125 |
+
if error[0]:
|
| 126 |
+
if attempt == max_attempts - 1:
|
| 127 |
+
return "", False, f"Generation error: {error[0]}"
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
if result[0]:
|
| 131 |
+
# Validate JSON and schema
|
| 132 |
+
try:
|
| 133 |
+
parsed = json.loads(result[0])
|
| 134 |
+
jsonschema.validate(parsed, schema)
|
| 135 |
+
return result[0], True, None
|
| 136 |
+
except (json.JSONDecodeError, jsonschema.ValidationError) as e:
|
| 137 |
+
if attempt == max_attempts - 1:
|
| 138 |
+
return result[0], False, f"JSON validation failed: {str(e)}"
|
| 139 |
+
continue
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
if attempt == max_attempts - 1:
|
| 143 |
+
return "", False, f"Generation error: {str(e)}"
|
| 144 |
+
continue
|
| 145 |
|
| 146 |
+
return "", False, "All generation attempts failed"
|
| 147 |
|
| 148 |
def create_test_schemas():
|
| 149 |
"""Create the test schemas we're evaluating against."""
|