feat: 100% success rate deployment ready - core files only for Spaces
Browse files- .gitignore +1 -0
- constrained_results.json +1 -1
- hub_upload/README.md +3 -3
.gitignore
CHANGED
|
@@ -89,3 +89,4 @@ temp/
|
|
| 89 |
# Backup files
|
| 90 |
*.backup
|
| 91 |
*.bak
|
|
|
|
|
|
| 89 |
# Backup files
|
| 90 |
*.backup
|
| 91 |
*.bak
|
| 92 |
+
hub_upload/
|
constrained_results.json
CHANGED
|
@@ -46,5 +46,5 @@
|
|
| 46 |
"error": null
|
| 47 |
}
|
| 48 |
],
|
| 49 |
-
"timestamp":
|
| 50 |
}
|
|
|
|
| 46 |
"error": null
|
| 47 |
}
|
| 48 |
],
|
| 49 |
+
"timestamp": 1753125803.179281
|
| 50 |
}
|
hub_upload/README.md
CHANGED
|
@@ -50,7 +50,7 @@ You are a helpful assistant that calls functions by responding with valid JSON.
|
|
| 50 |
"name": "get_weather_forecast",
|
| 51 |
"description": "Get weather forecast for a location",
|
| 52 |
"parameters": {
|
| 53 |
-
"type": "object",
|
| 54 |
"properties": {
|
| 55 |
"location": {"type": "string"},
|
| 56 |
"days": {"type": "integer", "minimum": 1, "maximum": 14}
|
|
@@ -78,9 +78,9 @@ print(response)
|
|
| 78 |
- **LoRA Configuration**: r=8, alpha=16, dropout=0.1
|
| 79 |
- **Target Modules**: q_proj, v_proj, k_proj, o_proj, gate_proj, up_proj, down_proj
|
| 80 |
- **Training Data**: 534 high-quality function calling examples
|
| 81 |
-
- **Training Setup**: 10 epochs, batch size 8, learning rate 5e-5
|
| 82 |
- **Hardware**: Apple M4 Max with MPS acceleration
|
| 83 |
-
- **Training Time**:
|
| 84 |
|
| 85 |
## Use Cases
|
| 86 |
- **API Integration**: Automatically generate function calls for any JSON schema
|
|
|
|
| 50 |
"name": "get_weather_forecast",
|
| 51 |
"description": "Get weather forecast for a location",
|
| 52 |
"parameters": {
|
| 53 |
+
"type": "object",
|
| 54 |
"properties": {
|
| 55 |
"location": {"type": "string"},
|
| 56 |
"days": {"type": "integer", "minimum": 1, "maximum": 14}
|
|
|
|
| 78 |
- **LoRA Configuration**: r=8, alpha=16, dropout=0.1
|
| 79 |
- **Target Modules**: q_proj, v_proj, k_proj, o_proj, gate_proj, up_proj, down_proj
|
| 80 |
- **Training Data**: 534 high-quality function calling examples
|
| 81 |
+
- **Training Setup**: 10 epochs, 670 steps, batch size 8, learning rate 5e-5
|
| 82 |
- **Hardware**: Apple M4 Max with MPS acceleration
|
| 83 |
+
- **Training Time**: 80 minutes for full convergence
|
| 84 |
|
| 85 |
## Use Cases
|
| 86 |
- **API Integration**: Automatically generate function calls for any JSON schema
|