Spaces:
Runtime error
Runtime error
| import sys | |
| import onnxruntime as ort | |
| import numpy as np | |
| import string | |
| # Transformers, HuggingFace Hub, and Gradio | |
| from transformers import AutoTokenizer | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| # ------------------------------------------------ | |
| # Turn Detector Configuration | |
| # ------------------------------------------------ | |
| HG_MODEL = "livekit/turn-detector" # or your HF model repo | |
| ONNX_FILENAME = "model_quantized.onnx" # path to your ONNX file | |
| MAX_HISTORY_TOKENS = 512 | |
| PUNCS = string.punctuation.replace("'", "") | |
| # ------------------------------------------------ | |
| # Utility functions | |
| # ------------------------------------------------ | |
| def softmax(logits: np.ndarray) -> np.ndarray: | |
| exp_logits = np.exp(logits - np.max(logits)) | |
| return exp_logits / np.sum(exp_logits) | |
| def normalize_text(text: str) -> str: | |
| """Lowercase, strip punctuation (except single quotes), and collapse whitespace.""" | |
| def strip_puncs(text_in): | |
| return text_in.translate(str.maketrans("", "", PUNCS)) | |
| return " ".join(strip_puncs(text).lower().split()) | |
| def calculate_eou(chat_ctx, session, tokenizer) -> float: | |
| """ | |
| Given a conversation context (list of dicts with 'role' and 'content'), | |
| returns the probability that the user is finished speaking. | |
| """ | |
| # Collect normalized messages from 'user' or 'assistant' roles | |
| normalized_ctx = [] | |
| for msg in chat_ctx: | |
| if msg["role"] in ("user", "assistant"): | |
| content = normalize_text(msg["content"]) | |
| if content: | |
| normalized_ctx.append(content) | |
| # Join them into one input string | |
| text = " ".join(normalized_ctx) | |
| inputs = tokenizer( | |
| text, | |
| return_tensors="np", | |
| truncation=True, | |
| max_length=MAX_HISTORY_TOKENS, | |
| ) | |
| input_ids = np.array(inputs["input_ids"], dtype=np.int64) | |
| # Run inference | |
| outputs = session.run(["logits"], {"input_ids": input_ids}) | |
| logits = outputs[0][0, -1, :] | |
| # Softmax over logits | |
| probs = softmax(logits) | |
| # The ID for the <|im_end|> special token | |
| eou_token_id = tokenizer.encode("<|im_end|>")[-1] | |
| return probs[eou_token_id] | |
| # ------------------------------------------------ | |
| # Load ONNX session & tokenizer once | |
| # ------------------------------------------------ | |
| print("Loading ONNX model session...") | |
| onnx_session = ort.InferenceSession( | |
| ONNX_FILENAME, providers=["CPUExecutionProvider"]) | |
| print("Loading tokenizer...") | |
| turn_detector_tokenizer = AutoTokenizer.from_pretrained(HG_MODEL) | |
| # ------------------------------------------------ | |
| # HF InferenceClient for text generation (example) | |
| # ------------------------------------------------ | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| # Adjust above to any other endpoint that suits your use case. | |
| # ------------------------------------------------ | |
| # Gradio Chat Handler | |
| # ------------------------------------------------ | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| """ | |
| This function is called on each new user message in the ChatInterface. | |
| - 'message' is the new user input | |
| - 'history' is a list of (user, assistant) tuples | |
| - 'system_message' is from the system Textbox | |
| - max_tokens, temperature, top_p come from the Sliders | |
| """ | |
| # 1) Build a list of messages in the OpenAI-style format: | |
| # [{'role': 'system', 'content': ...}, | |
| # {'role': 'user', 'content': ...}, ...] | |
| messages = [ | |
| {"role": "user", | |
| "content": message} | |
| ] | |
| if system_message.strip(): | |
| messages.insert(0, {"role": "system", "content": system_message}) | |
| # history is a list of tuples: [(user1, assistant1), (user2, assistant2), ...] | |
| """ for user_text, assistant_text in history: | |
| if user_text: | |
| messages.append({"role": "user", "content": user_text}) | |
| if assistant_text: | |
| messages.append({"role": "assistant", "content": assistant_text}) | |
| # Append the new user message | |
| messages.append({"role": "user", "content": message}) """ | |
| # 2) Calculate EOU probability on the entire conversation | |
| eou_prob = calculate_eou(messages, onnx_session, turn_detector_tokenizer) | |
| # 3) Generate the assistant response from your HF model. | |
| # (This code streams token-by-token.) | |
| response = "" | |
| yield f"[EOU Probability: {eou_prob:.4f}]" | |
| # ------------------------------------------------ | |
| # Gradio ChatInterface | |
| # ------------------------------------------------ | |
| """ | |
| This ChatInterface will have: | |
| - A chat box | |
| - A system message textbox | |
| - 3 sliders for max_tokens, temperature, and top_p | |
| """ | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="You are a friendly Chatbot.", | |
| label="System message", | |
| lines=2 | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=2048, | |
| value=512, | |
| step=1, | |
| label="Max new tokens" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)" | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |