Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +106 -0
- requirements.txt +11 -0
app.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 5 |
+
from peft import PeftModel
|
| 6 |
+
import gc
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Add this line immediately after your imports
|
| 10 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 11 |
+
|
| 12 |
+
# --- Configuration ---
|
| 13 |
+
base_model_id = "joeee2321512/Qwen2.5-VL-3B-Instruct-finetuned"
|
| 14 |
+
adapter_id = "joeee2321512/Basira"
|
| 15 |
+
|
| 16 |
+
# --- Model Loading ---
|
| 17 |
+
print("Loading base model...")
|
| 18 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 19 |
+
base_model_id,
|
| 20 |
+
torch_dtype=torch.float16,
|
| 21 |
+
device_map="auto",
|
| 22 |
+
token=os.getenv("token_HF")
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
print("Loading processor...")
|
| 26 |
+
processor = AutoProcessor.from_pretrained(
|
| 27 |
+
base_model_id,
|
| 28 |
+
token=os.getenv("token_HF")
|
| 29 |
+
)
|
| 30 |
+
processor.tokenizer.padding_side = "right"
|
| 31 |
+
|
| 32 |
+
print("Loading and applying adapter...")
|
| 33 |
+
model = PeftModel.from_pretrained(model, adapter_id)
|
| 34 |
+
print("Model loaded successfully!")
|
| 35 |
+
|
| 36 |
+
# --- The Inference Function ---
|
| 37 |
+
def perform_ocr_on_image(image_input: Image.Image) -> str:
|
| 38 |
+
"""
|
| 39 |
+
This is the core function that Gradio will call.
|
| 40 |
+
It takes a PIL image and returns the transcribed text string.
|
| 41 |
+
"""
|
| 42 |
+
if image_input is None:
|
| 43 |
+
return "Please upload an image."
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
# Format the prompt using the chat template
|
| 47 |
+
messages = [
|
| 48 |
+
{
|
| 49 |
+
"role": "user",
|
| 50 |
+
"content": [
|
| 51 |
+
{"type": "image", "image": image_input},
|
| 52 |
+
{"type": "text", "text": (
|
| 53 |
+
"Analyze the input image and detect all Arabic text. "
|
| 54 |
+
"Output only the extracted textβverbatim and in its original scriptβ"
|
| 55 |
+
"without any added commentary, translation, punctuation or formatting. "
|
| 56 |
+
"Present each line of text as plain UTF-8 strings, with no extra characters or words."
|
| 57 |
+
)},
|
| 58 |
+
],
|
| 59 |
+
}
|
| 60 |
+
]
|
| 61 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 62 |
+
|
| 63 |
+
# Prepare inputs for the model
|
| 64 |
+
inputs = processor(text=text, images=image_input, return_tensors="pt").to(model.device)
|
| 65 |
+
|
| 66 |
+
# Generate prediction
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
| 69 |
+
|
| 70 |
+
# Decode the output
|
| 71 |
+
full_response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 72 |
+
|
| 73 |
+
# --- FIX: Post-process the response to remove the prompt ---
|
| 74 |
+
# The model's actual output starts after the "assistant" marker.
|
| 75 |
+
# We split the full response by this marker and take the last part.
|
| 76 |
+
parts = full_response.split("assistant")
|
| 77 |
+
if len(parts) > 1:
|
| 78 |
+
# Take the last part and remove any leading/trailing whitespace
|
| 79 |
+
cleaned_response = parts[-1].strip()
|
| 80 |
+
else:
|
| 81 |
+
# If the marker isn't found, return the full response as a fallback
|
| 82 |
+
cleaned_response = full_response
|
| 83 |
+
# --- END OF FIX ---
|
| 84 |
+
|
| 85 |
+
# Clean up memory
|
| 86 |
+
gc.collect()
|
| 87 |
+
torch.cuda.empty_cache()
|
| 88 |
+
|
| 89 |
+
return cleaned_response
|
| 90 |
+
|
| 91 |
+
except Exception as e:
|
| 92 |
+
print(f"An error occurred during inference: {e}")
|
| 93 |
+
return f"An error occurred: {str(e)}"
|
| 94 |
+
|
| 95 |
+
# --- Create and Launch the Gradio Interface ---
|
| 96 |
+
demo = gr.Interface(
|
| 97 |
+
fn=perform_ocr_on_image,
|
| 98 |
+
inputs=gr.Image(type="pil", label="Upload Arabic Document Image"),
|
| 99 |
+
outputs=gr.Textbox(label="Transcription", lines=10, show_copy_button=True),
|
| 100 |
+
title="Basira: Fine-Tuned Qwen-VL for Arabic OCR",
|
| 101 |
+
description="A demo for the Qwen-VL 2.5 (3B) model, fine-tuned for enhanced Arabic OCR. Upload an image to see the transcription.",
|
| 102 |
+
allow_flagging="never"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
if _name_ == "_main_":
|
| 106 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# requirements.txt
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
peft
|
| 5 |
+
accelerate
|
| 6 |
+
bitsandbytes
|
| 7 |
+
Pillow
|
| 8 |
+
gradio
|
| 9 |
+
sentencepiece
|
| 10 |
+
qwen-vl-utils
|
| 11 |
+
torchvision
|