File size: 1,745 Bytes
7f99b50
 
 
 
 
 
 
 
 
 
 
 
 
e864fc9
 
7f99b50
e864fc9
7f99b50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e864fc9
7f99b50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e864fc9
7f99b50
e864fc9
7f99b50
 
 
e864fc9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
from huggingface_hub import InferenceClient


def respond(
    message,
    history: list[dict[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    """
    Public version of the chatbot — no OAuth required.
    Uses Hugging Face's Inference API (requires the model to be public).
    """
    client = InferenceClient(model="openai/gpt-oss-20b")

    messages = [{"role": "system", "content": system_message}]
    messages.extend(history)
    messages.append({"role": "user", "content": message})

    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        choices = message.choices
        token = ""
        if len(choices) and choices[0].delta.content:
            token = choices[0].delta.content

        response += token
        yield response


# Chatbot UI
chatbot = gr.ChatInterface(
    respond,
    type="messages",
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

# Public app (no login, no auth)
with gr.Blocks() as demo:
    gr.Markdown("## 🤖 JoeyMerhej Public Chatbot\nNo login required — start chatting below!")
    chatbot.render()

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)