Spaces:
Paused
Paused
Update app.py to include port and 0.0.0.0 in app launch
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
from transformers import Qwen2VLForConditionalGeneration,
|
| 4 |
from qwen_vl_utils import process_vision_info
|
| 5 |
import torch
|
| 6 |
import base64
|
|
@@ -9,8 +10,15 @@ from io import BytesIO
|
|
| 9 |
import re
|
| 10 |
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
models = {
|
| 13 |
-
"OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
}
|
| 15 |
|
| 16 |
processors = {
|
|
@@ -18,14 +26,13 @@ processors = {
|
|
| 18 |
}
|
| 19 |
|
| 20 |
|
| 21 |
-
def image_to_base64(image):
|
| 22 |
buffered = BytesIO()
|
| 23 |
image.save(buffered, format="PNG")
|
| 24 |
-
|
| 25 |
-
return img_str
|
| 26 |
|
| 27 |
|
| 28 |
-
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
|
| 29 |
draw = ImageDraw.Draw(image)
|
| 30 |
for box in bounding_boxes:
|
| 31 |
xmin, ymin, xmax, ymax = box
|
|
@@ -39,13 +46,7 @@ def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scal
|
|
| 39 |
rescaled_boxes = []
|
| 40 |
for box in bounding_boxes:
|
| 41 |
xmin, ymin, xmax, ymax = box
|
| 42 |
-
|
| 43 |
-
xmin * x_scale,
|
| 44 |
-
ymin * y_scale,
|
| 45 |
-
xmax * x_scale,
|
| 46 |
-
ymax * y_scale
|
| 47 |
-
]
|
| 48 |
-
rescaled_boxes.append(rescaled_box)
|
| 49 |
return rescaled_boxes
|
| 50 |
|
| 51 |
|
|
@@ -53,7 +54,8 @@ def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scal
|
|
| 53 |
def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
|
| 54 |
model = models[model_id].eval()
|
| 55 |
processor = processors[model_id]
|
| 56 |
-
|
|
|
|
| 57 |
messages = [
|
| 58 |
{
|
| 59 |
"role": "user",
|
|
@@ -64,9 +66,7 @@ def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
|
|
| 64 |
}
|
| 65 |
]
|
| 66 |
|
| 67 |
-
text = processor.apply_chat_template(
|
| 68 |
-
messages, tokenize=False, add_generation_prompt=True
|
| 69 |
-
)
|
| 70 |
image_inputs, video_inputs = process_vision_info(messages)
|
| 71 |
inputs = processor(
|
| 72 |
text=[text],
|
|
@@ -74,47 +74,60 @@ def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
|
|
| 74 |
videos=video_inputs,
|
| 75 |
padding=True,
|
| 76 |
return_tensors="pt",
|
| 77 |
-
)
|
| 78 |
-
inputs = inputs.to("cuda")
|
| 79 |
|
| 80 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 81 |
-
generated_ids_trimmed = [
|
| 82 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 83 |
-
]
|
| 84 |
output_text = processor.batch_decode(
|
| 85 |
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
|
| 86 |
)
|
| 87 |
-
print(output_text)
|
| 88 |
text = output_text[0]
|
| 89 |
|
|
|
|
| 90 |
object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>"
|
| 91 |
box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>"
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
boxes = [
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height)
|
| 100 |
-
return object_ref, scaled_boxes, draw_bounding_boxes(image, scaled_boxes)
|
| 101 |
|
| 102 |
css = """
|
| 103 |
#output {
|
| 104 |
-
height: 500px;
|
| 105 |
-
overflow: auto;
|
| 106 |
-
border: 1px solid #ccc;
|
| 107 |
}
|
| 108 |
"""
|
|
|
|
| 109 |
with gr.Blocks(css=css) as demo:
|
| 110 |
-
gr.Markdown(
|
| 111 |
-
|
| 112 |
-
# Demo for OS-ATLAS: A Foundation Action Model For Generalist GUI Agents
|
| 113 |
-
""")
|
| 114 |
with gr.Row():
|
| 115 |
with gr.Column():
|
| 116 |
input_img = gr.Image(label="Input Image", type="pil")
|
| 117 |
-
model_selector = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
text_input = gr.Textbox(label="User Prompt")
|
| 119 |
submit_btn = gr.Button(value="Submit")
|
| 120 |
with gr.Column():
|
|
@@ -131,9 +144,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 131 |
outputs=[model_output_text, model_output_box, annotated_image],
|
| 132 |
fn=run_example,
|
| 133 |
cache_examples=True,
|
| 134 |
-
label="Try examples"
|
| 135 |
)
|
| 136 |
|
| 137 |
-
submit_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
import spaces
|
| 4 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 5 |
from qwen_vl_utils import process_vision_info
|
| 6 |
import torch
|
| 7 |
import base64
|
|
|
|
| 10 |
import re
|
| 11 |
|
| 12 |
|
| 13 |
+
# ---- HF Spaces: ensure we read the platform port ----
|
| 14 |
+
PORT = int(os.getenv("PORT", "7860"))
|
| 15 |
+
|
| 16 |
models = {
|
| 17 |
+
"OS-Copilot/OS-Atlas-Base-7B": Qwen2VLForConditionalGeneration.from_pretrained(
|
| 18 |
+
"OS-Copilot/OS-Atlas-Base-7B",
|
| 19 |
+
torch_dtype="auto",
|
| 20 |
+
device_map="auto",
|
| 21 |
+
),
|
| 22 |
}
|
| 23 |
|
| 24 |
processors = {
|
|
|
|
| 26 |
}
|
| 27 |
|
| 28 |
|
| 29 |
+
def image_to_base64(image: Image.Image) -> str:
|
| 30 |
buffered = BytesIO()
|
| 31 |
image.save(buffered, format="PNG")
|
| 32 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
+
def draw_bounding_boxes(image: Image.Image, bounding_boxes, outline_color="red", line_width=2):
|
| 36 |
draw = ImageDraw.Draw(image)
|
| 37 |
for box in bounding_boxes:
|
| 38 |
xmin, ymin, xmax, ymax = box
|
|
|
|
| 46 |
rescaled_boxes = []
|
| 47 |
for box in bounding_boxes:
|
| 48 |
xmin, ymin, xmax, ymax = box
|
| 49 |
+
rescaled_boxes.append([xmin * x_scale, ymin * y_scale, xmax * x_scale, ymax * y_scale])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
return rescaled_boxes
|
| 51 |
|
| 52 |
|
|
|
|
| 54 |
def run_example(image, text_input, model_id="OS-Copilot/OS-Atlas-Base-7B"):
|
| 55 |
model = models[model_id].eval()
|
| 56 |
processor = processors[model_id]
|
| 57 |
+
|
| 58 |
+
prompt = f'In this UI screenshot, what is the position of the element corresponding to the command "{text_input}" (with bbox)?'
|
| 59 |
messages = [
|
| 60 |
{
|
| 61 |
"role": "user",
|
|
|
|
| 66 |
}
|
| 67 |
]
|
| 68 |
|
| 69 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
| 70 |
image_inputs, video_inputs = process_vision_info(messages)
|
| 71 |
inputs = processor(
|
| 72 |
text=[text],
|
|
|
|
| 74 |
videos=video_inputs,
|
| 75 |
padding=True,
|
| 76 |
return_tensors="pt",
|
| 77 |
+
).to("cuda")
|
|
|
|
| 78 |
|
| 79 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 80 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
|
|
|
|
|
|
| 81 |
output_text = processor.batch_decode(
|
| 82 |
generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
|
| 83 |
)
|
|
|
|
| 84 |
text = output_text[0]
|
| 85 |
|
| 86 |
+
# ---- simple, defensive parsing so the Space doesn't 500 if pattern not found ----
|
| 87 |
object_ref_pattern = r"<\|object_ref_start\|>(.*?)<\|object_ref_end\|>"
|
| 88 |
box_pattern = r"<\|box_start\|>(.*?)<\|box_end\|>"
|
| 89 |
|
| 90 |
+
object_match = re.search(object_ref_pattern, text or "")
|
| 91 |
+
box_match = re.search(box_pattern, text or "")
|
| 92 |
+
|
| 93 |
+
object_ref = object_match.group(1) if object_match else ""
|
| 94 |
+
box_content = box_match.group(1) if box_match else ""
|
| 95 |
|
| 96 |
+
boxes = []
|
| 97 |
+
if box_content:
|
| 98 |
+
try:
|
| 99 |
+
parsed = [tuple(map(int, pair.strip("()").split(","))) for pair in box_content.split("),(")]
|
| 100 |
+
# expecting two points -> convert to [xmin, ymin, xmax, ymax]
|
| 101 |
+
if len(parsed) >= 2:
|
| 102 |
+
boxes = [[parsed[0][0], parsed[0][1], parsed[1][0], parsed[1][1]]]
|
| 103 |
+
except Exception:
|
| 104 |
+
boxes = []
|
| 105 |
+
|
| 106 |
+
scaled_boxes = rescale_bounding_boxes(boxes, image.width, image.height) if boxes else []
|
| 107 |
+
annotated = draw_bounding_boxes(image.copy(), scaled_boxes) if scaled_boxes else image
|
| 108 |
+
|
| 109 |
+
return object_ref, scaled_boxes, annotated
|
| 110 |
|
|
|
|
|
|
|
| 111 |
|
| 112 |
css = """
|
| 113 |
#output {
|
| 114 |
+
height: 500px;
|
| 115 |
+
overflow: auto;
|
| 116 |
+
border: 1px solid #ccc;
|
| 117 |
}
|
| 118 |
"""
|
| 119 |
+
|
| 120 |
with gr.Blocks(css=css) as demo:
|
| 121 |
+
gr.Markdown("# Demo for OS-ATLAS: A Foundation Action Model For Generalist GUI Agents")
|
| 122 |
+
|
|
|
|
|
|
|
| 123 |
with gr.Row():
|
| 124 |
with gr.Column():
|
| 125 |
input_img = gr.Image(label="Input Image", type="pil")
|
| 126 |
+
model_selector = gr.Dropdown(
|
| 127 |
+
choices=list(models.keys()),
|
| 128 |
+
label="Model",
|
| 129 |
+
value="OS-Copilot/OS-Atlas-Base-7B"
|
| 130 |
+
)
|
| 131 |
text_input = gr.Textbox(label="User Prompt")
|
| 132 |
submit_btn = gr.Button(value="Submit")
|
| 133 |
with gr.Column():
|
|
|
|
| 144 |
outputs=[model_output_text, model_output_box, annotated_image],
|
| 145 |
fn=run_example,
|
| 146 |
cache_examples=True,
|
| 147 |
+
label="Try examples",
|
| 148 |
)
|
| 149 |
|
| 150 |
+
submit_btn.click(
|
| 151 |
+
run_example,
|
| 152 |
+
[input_img, text_input, model_selector],
|
| 153 |
+
[model_output_text, model_output_box, annotated_image],
|
| 154 |
+
)
|
| 155 |
|
| 156 |
+
# ---- HF Spaces: bind to all interfaces + use provided port; disable API schema to avoid json-schema bug ----
|
| 157 |
+
demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=PORT, show_error=True, debug=True)
|