Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
# Define the LLM models and their properties
|
| 5 |
+
models = {
|
| 6 |
+
"gpt-4o-2024-08-06": {
|
| 7 |
+
"input_price_per_1M": 2.50,
|
| 8 |
+
"output_price_per_1M": 10.00,
|
| 9 |
+
"max_input_tokens": 128_000,
|
| 10 |
+
},
|
| 11 |
+
"gpt-4o-mini-2024-07-18": {
|
| 12 |
+
"input_price_per_1M": 0.15,
|
| 13 |
+
"output_price_per_1M": 0.600,
|
| 14 |
+
"max_input_tokens": 128_000,
|
| 15 |
+
},
|
| 16 |
+
"Claude 3.5 Sonnet": {
|
| 17 |
+
"input_price_per_1M": 3.0,
|
| 18 |
+
"output_price_per_1M": 15.0,
|
| 19 |
+
"max_input_tokens": 200_000,
|
| 20 |
+
},
|
| 21 |
+
"GPT-3.5-turbo": {
|
| 22 |
+
"input_price_per_1M": 0.5,
|
| 23 |
+
"output_price_per_1M": 1.5,
|
| 24 |
+
"max_input_tokens": 4096,
|
| 25 |
+
},
|
| 26 |
+
"GPT-4": {
|
| 27 |
+
"input_price_per_1M": 30.0,
|
| 28 |
+
"output_price_per_1M": 60.0,
|
| 29 |
+
"max_input_tokens": 8192,
|
| 30 |
+
},
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
def calculate_cost(model, input_tokens, output_tokens, num_requests):
|
| 34 |
+
if model not in models:
|
| 35 |
+
return "Invalid model selected", 0, 0, 0
|
| 36 |
+
|
| 37 |
+
if input_tokens > models[model]["max_input_tokens"]:
|
| 38 |
+
return f"Input tokens exceed the maximum limit for {model}", 0, 0, 0
|
| 39 |
+
|
| 40 |
+
input_cost = (input_tokens / 1_000_000) * models[model]["input_price_per_1M"] * num_requests
|
| 41 |
+
output_cost = (output_tokens / 1_000_000) * models[model]["output_price_per_1M"] * num_requests
|
| 42 |
+
total_cost = input_cost + output_cost
|
| 43 |
+
|
| 44 |
+
return f"${total_cost:.6f}", input_cost, output_cost, total_cost
|
| 45 |
+
|
| 46 |
+
def compare_models(input_tokens, output_tokens, num_requests):
|
| 47 |
+
results = []
|
| 48 |
+
for model in models:
|
| 49 |
+
total_cost_str, input_cost, output_cost, total_cost = calculate_cost(
|
| 50 |
+
model, input_tokens, output_tokens, num_requests
|
| 51 |
+
)
|
| 52 |
+
results.append(
|
| 53 |
+
{
|
| 54 |
+
"Model": model,
|
| 55 |
+
"Input Cost": f"${input_cost:.6f}",
|
| 56 |
+
"Output Cost": f"${output_cost:.6f}",
|
| 57 |
+
"Total Cost": total_cost_str,
|
| 58 |
+
"Max Input Tokens": models[model]["max_input_tokens"],
|
| 59 |
+
"Input Price (1M)": f"${models[model]['input_price_per_1M']:.2f}",
|
| 60 |
+
"Output Price (1M)": f"${models[model]['output_price_per_1M']:.2f}",
|
| 61 |
+
}
|
| 62 |
+
)
|
| 63 |
+
return pd.DataFrame(results)
|
| 64 |
+
|
| 65 |
+
def create_interface():
|
| 66 |
+
with gr.Blocks() as interface:
|
| 67 |
+
gr.Markdown("# LLM Price Comparison Tool")
|
| 68 |
+
with gr.Row():
|
| 69 |
+
input_tokens = gr.Number(label="Input Tokens", value=100)
|
| 70 |
+
output_tokens = gr.Number(label="Output Tokens", value=100)
|
| 71 |
+
num_requests = gr.Number(label="Number of Requests", value=1, step=1)
|
| 72 |
+
compare_btn = gr.Button("Compare Models")
|
| 73 |
+
output_table = gr.DataFrame(label="Comparison Results")
|
| 74 |
+
|
| 75 |
+
compare_btn.click(
|
| 76 |
+
fn=compare_models,
|
| 77 |
+
inputs=[input_tokens, output_tokens, num_requests],
|
| 78 |
+
outputs=output_table,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
return interface
|
| 82 |
+
|
| 83 |
+
# Create and launch the interface
|
| 84 |
+
demo = create_interface()
|
| 85 |
+
|
| 86 |
+
# Hugging Face specific launch
|
| 87 |
+
if __name__ == "__main__":
|
| 88 |
+
demo.launch()
|
| 89 |
+
else:
|
| 90 |
+
demo.launch(share=True)
|