Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,832 Bytes
60cc71a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
from dataclasses import dataclass
from typing import Callable, List, Tuple
import torch
import safetensors.torch as st
from huggingface_hub import hf_hub_download
from model import EchoDiT
from autoencoder import build_ae, DAC
import torchaudio
from torchcodec.decoders import AudioDecoder
# from samplers import Sampler
SampleFn = Callable[
[EchoDiT, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, int],
torch.Tensor
]
### Loading
def load_model_from_hf(repo_id: str = 'jordand/echo-tts', device: str = 'cuda', dtype: torch.dtype | None = torch.bfloat16, compile: bool = False, token: str | None = None) -> EchoDiT:
with torch.device('meta'):
model = EchoDiT(
latent_size=80, model_size=2048, num_layers=24, num_heads=16,
intermediate_size=5888, norm_eps=1e-5, max_seq_len=640,
text_vocab_size=256, text_model_size=1280, text_num_layers=14,
text_num_heads=10, text_intermediate_size=3328, text_max_seq_len=768,
speaker_patch_size=4, speaker_model_size=1280, speaker_num_layers=14,
speaker_num_heads=10, speaker_intermediate_size=3328,
speaker_max_patched_seq_len=640, timestep_embed_size=512, adaln_rank=256,
)
w_path = hf_hub_download(repo_id, 'pytorch_model.safetensors', token=token)
# Load to CPU first
state = st.load_file(w_path, device='cpu')
# Convert dtype on CPU if needed
if dtype is not None:
state = {k: v.to(dtype=dtype) for k, v in state.items()}
# Now move to device
state = {k: v.to(device=device) for k, v in state.items()}
model.load_state_dict(state, strict=True, assign=True)
model = model.eval()
if compile:
model = torch.compile(model)
model.get_kv_cache = torch.compile(model.get_kv_cache)
return model
def load_fish_ae_from_hf(repo_id: str = 'jordand/fish-s1-dac-min', device: str = 'cuda', dtype: torch.dtype | None = torch.float32, compile: bool = False, token: str | None = None) -> DAC:
# have not tested lower precisions with fish AE yet
with torch.device('meta'):
fish_ae = build_ae()
w_path = hf_hub_download(repo_id, 'pytorch_model.safetensors', token=token)
if dtype is not None and dtype != torch.float32:
state = st.load_file(w_path, device='cpu')
state = {k: v.to(dtype=dtype) for k, v in state.items()}
state = {k: v.to(device=device) for k, v in state.items()}
fish_ae.load_state_dict(state, strict=False, assign=True)
else:
state = st.load_file(w_path, device=device)
fish_ae.load_state_dict(state, strict=False, assign=True)
fish_ae = fish_ae.eval().to(device)
if compile:
fish_ae.encoder = torch.compile(fish_ae.encoder)
fish_ae.decoder = torch.compile(fish_ae.decoder)
return fish_ae
@dataclass
class PCAState:
pca_components: torch.Tensor
pca_mean: torch.Tensor
latent_scale: float
def load_pca_state_from_hf(repo_id: str = 'jordand/echo-tts', device: str = 'cuda', filename: str = 'pca_state.safetensors', token: str | None = None) -> PCAState:
p_path = hf_hub_download(repo_id, filename, token=token)
t = st.load_file(p_path, device=device)
return PCAState(
pca_components=t["pca_components"],
pca_mean=t["pca_mean"],
latent_scale=float(t["latent_scale"].item()),
)
### default load audio
def load_audio(path: str) -> torch.Tensor:
decoder = AudioDecoder(path)
sr = decoder.metadata.sample_rate
audio = decoder.get_samples_played_in_range(0, 120)
audio = audio.data.mean(dim=0).unsqueeze(0)
audio = torchaudio.functional.resample(audio, sr, 44_100)
audio = audio / torch.maximum(audio.abs().max(), torch.tensor(1.))
# TODO is this better than clipping? should we target a specific energy level?
return audio
### Text helpers
def tokenizer_encode(text: str, append_bos: bool = True, normalize: bool = True) -> torch.Tensor:
if normalize:
text = text.replace('…', '...')
text = text.replace('“', '"')
text = text.replace('”', '"')
text = text.replace('’', "'")
text = text.replace('\n', " ")
b = list(text.encode('utf-8'))
if append_bos:
b.insert(0, 0)
return torch.tensor(b)
def get_text_input_ids_and_mask(text_arr: List[str], max_length: int | None, device: str | None = None) -> tuple[torch.Tensor, torch.Tensor]:
batch_size = len(text_arr)
if max_length is None:
max_length = max(len(tokenizer_encode(text)) for text in text_arr) # obviously bad...
tokens = torch.zeros((batch_size, max_length), dtype=torch.int32)
mask = torch.zeros((batch_size, max_length), dtype=torch.bool)
for i, text in enumerate(text_arr):
encoded = tokenizer_encode(text)
length = min(len(encoded), max_length)
tokens[i, :length] = encoded[:length]
mask[i, :length] = 1
if device is not None:
tokens = tokens.to(device)
mask = mask.to(device)
return tokens, mask
### Autoencoder Inference
@torch.inference_mode()
def ae_encode(fish_ae: DAC, pca_state: PCAState, audio: torch.Tensor) -> torch.Tensor:
assert audio.ndim == 3 and audio.shape[1] == 1 # (b, 1, length)
z_q = fish_ae.encode_zq(audio).float()
z_q = (z_q.transpose(1, 2) - pca_state.pca_mean) @ pca_state.pca_components.T
z_q = z_q * pca_state.latent_scale
return z_q
@torch.inference_mode()
def ae_decode(fish_ae: DAC, pca_state: PCAState, z_q: torch.Tensor) -> torch.Tensor:
z_q = (z_q / pca_state.latent_scale) @ pca_state.pca_components + pca_state.pca_mean
return fish_ae.decode_zq(z_q.transpose(1, 2).to(fish_ae.dtype)).float()
@torch.inference_mode()
def ae_reconstruct(fish_ae: DAC, pca_state: PCAState, audio: torch.Tensor) -> torch.Tensor:
# (audio is (b, 1, length))
z_q = ae_encode(fish_ae, pca_state, audio.to(fish_ae.dtype))
return ae_decode(fish_ae, pca_state, z_q)
@torch.inference_mode()
def get_speaker_latent_and_mask(
fish_ae: DAC,
pca_state: PCAState,
audio: torch.Tensor, # (1, length)
max_speaker_latent_len: int = 2560, # pretrained max length
audio_chunk_size: int = 640 * 2048 # (~30 seconds, 1/4 max speaker condition size)
) -> tuple[torch.Tensor, torch.Tensor]:
# gets speaker latent and mask from audio, computes in chunks and concatenates (similar to pretraining setup)
AE_DOWNSAMPLE_FACTOR = 2048
max_audio_len = max_speaker_latent_len * AE_DOWNSAMPLE_FACTOR
assert audio.ndim == 2 and audio.shape[0] == 1 # (1, length)
audio = audio[:, :max_audio_len]
audio_len = audio.shape[1]
latent_arr = []
for i in range(0, audio_len, audio_chunk_size):
audio_chunk = audio[:, i:i + audio_chunk_size]
if audio_chunk.shape[1] < audio_chunk_size:
audio_chunk = torch.nn.functional.pad(audio_chunk, (0, audio_chunk_size - audio_chunk.shape[1]))
latent_chunk = ae_encode(fish_ae, pca_state, audio_chunk.unsqueeze(0))
latent_arr.append(latent_chunk)
speaker_latent = torch.cat(latent_arr, dim=1)
actual_latent_len = audio_len // AE_DOWNSAMPLE_FACTOR
speaker_mask = (torch.arange(speaker_latent.shape[1], device=speaker_latent.device) < actual_latent_len).unsqueeze(0)
if speaker_latent.shape[1] < max_speaker_latent_len:
speaker_latent = torch.nn.functional.pad(speaker_latent, (0, 0, 0, max_speaker_latent_len - speaker_latent.shape[1]))
speaker_mask = torch.nn.functional.pad(speaker_mask, (0, max_speaker_latent_len - speaker_mask.shape[1]))
return speaker_latent, speaker_mask
### Full sample pipeline
def find_flattening_point(data, target_value=0.0, window_size=20, std_threshold=0.05):
padded_data = torch.cat([data, torch.zeros(window_size, *data.shape[1:], device=data.device, dtype=data.dtype)])
for i in range(len(padded_data) - window_size):
window = padded_data[i:i + window_size]
if window.std() < std_threshold and abs(window.mean() - target_value) < 0.1:
return i
return len(data)
@torch.inference_mode()
def sample_pipeline(
model: EchoDiT,
fish_ae: DAC,
pca_state: PCAState,
sample_fn: SampleFn,
text_prompt: str,
speaker_audio: torch.Tensor | None,
rng_seed: int,
pad_to_max_speaker_latent_len: int | None = 2560,
pad_to_max_text_seq_len: int | None = 768,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
MAX_SPEAKER_LATENT_LEN = 2560
MAX_TEXT_SEQ_LEN = 768
device, dtype = model.device, model.dtype
text_input_ids, text_mask = get_text_input_ids_and_mask([text_prompt], min(pad_to_max_text_seq_len or MAX_TEXT_SEQ_LEN, MAX_TEXT_SEQ_LEN), device=device)
# print('initial text input ids length: ', text_input_ids.shape[1])
# torch.cuda.synchronize()
# import time
# t0 = time.time()
if speaker_audio is None:
# No speaker prompt - use zero speaker latent and mask
speaker_latent = torch.zeros((1, pad_to_max_speaker_latent_len if pad_to_max_speaker_latent_len else MAX_SPEAKER_LATENT_LEN, 80), device=device, dtype=dtype)
speaker_mask = torch.zeros((1, pad_to_max_speaker_latent_len if pad_to_max_speaker_latent_len else MAX_SPEAKER_LATENT_LEN), device=device, dtype=torch.bool)
# print("Using zero speaker latent and mask (no speaker prompt)")
else:
speaker_latent, speaker_mask = get_speaker_latent_and_mask(
fish_ae,
pca_state,
speaker_audio.to(fish_ae.dtype),
max_speaker_latent_len=pad_to_max_speaker_latent_len if pad_to_max_speaker_latent_len else MAX_SPEAKER_LATENT_LEN
)
speaker_latent = speaker_latent.to(device)
speaker_mask = speaker_mask.to(device)
# print('speaker latent shape: ', speaker_latent.shape)
# print('speaker mask shape: ', speaker_mask.shape)
# torch.cuda.synchronize()
# t1 = time.time()
# print(f"Time taken encode: {t1 - t0} seconds")
latent_out = sample_fn(model, speaker_latent, speaker_mask, text_input_ids, text_mask, rng_seed)
# torch.cuda.synchronize()
# t2 = time.time()
# print(f"Time taken sample: {t2 - t1} seconds")
audio_out = ae_decode(fish_ae, pca_state, latent_out)
# torch.cuda.synchronize()
# t3 = time.time()
# print(f"Time taken decode: {t3 - t2} seconds")
flattening_point = find_flattening_point(latent_out[0])
audio_out = audio_out[..., :flattening_point * 2048]
# print(f"\nTime taken total: {t3 - t0} seconds")
# peak_mem = torch.cuda.max_memory_allocated()
# print(f"Peak memory: {peak_mem / 1024**2:.2f} MB")
# print(torch.cuda.memory_summary(abbreviated=True))
return audio_out
|