Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,150 Bytes
60cc71a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
from typing import List, Tuple
from enum import Enum
import torch
from model import EchoDiT
# helper
def _get_uncond_text_input_ids_and_mask(batch_size: int, max_length: int, device: str | None = None) -> tuple[torch.Tensor, torch.Tensor]:
# returns zeros for text input ids, and (True, False, False, ... ) for text mask
text_input_ids_uncond = torch.zeros((batch_size, max_length), dtype=torch.int32)
text_mask_uncond = torch.zeros((batch_size, max_length), dtype=torch.bool)
text_mask_uncond[:, 0] = True
if device is not None:
text_input_ids_uncond = text_input_ids_uncond.to(device)
text_mask_uncond = text_mask_uncond.to(device)
return text_input_ids_uncond, text_mask_uncond
# SIMPLE SAMPLER FOR REFERENCE, SHOULD PROBABLY AVOID
@torch.inference_mode()
def sample_euler_cfg_simple(
model: EchoDiT,
speaker_latent: torch.Tensor,
speaker_mask: torch.Tensor,
text_input_ids: torch.Tensor,
text_mask: torch.Tensor,
rng_seed: int,
num_steps: int,
cfg_scale: float,
) -> torch.Tensor:
device, dtype = model.device, model.dtype
batch_size = text_input_ids.shape[0]
torch.manual_seed(rng_seed)
t_schedule = torch.linspace(1., 0., num_steps + 1, device=device)
text_input_ids_uncond, text_mask_uncond = _get_uncond_text_input_ids_and_mask(text_input_ids.shape[0], text_input_ids.shape[1], device=device)
speaker_latent_uncond, speaker_mask_uncond = torch.zeros_like(speaker_latent), torch.zeros_like(speaker_mask)
full_text_input_ids = torch.cat([text_input_ids, text_input_ids_uncond], dim=0)
full_text_mask = torch.cat([text_mask, text_mask_uncond], dim=0)
full_speaker_latent = torch.cat([speaker_latent, speaker_latent_uncond], dim=0)
full_speaker_mask = torch.cat([speaker_mask, speaker_mask_uncond], dim=0)
kv_cache = model.get_kv_cache(
speaker_latent=full_speaker_latent.to(dtype),
speaker_mask=full_speaker_mask,
text_input_ids=full_text_input_ids,
text_mask=full_text_mask,
)
x_t = torch.randn((batch_size, 640, 80), device=device, dtype=torch.float32)
for i in range(num_steps):
t, t_next = t_schedule[i], t_schedule[i+1]
v_cond, v_uncond = model(
x=torch.cat([x_t, x_t], dim=0).to(dtype),
t=(torch.ones((batch_size * 2,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=full_text_mask,
speaker_latent=None,
speaker_mask=full_speaker_mask,
kv_cache=kv_cache,
).float().chunk(2, dim=0)
v_pred = v_cond + cfg_scale * (v_cond - v_uncond)
# note: x_0_pred is x_t - v_pred * t
x_t = x_t + v_pred * (t_next - t)
return x_t
######
def _temporal_score_rescale(v_pred: torch.Tensor, x_t: torch.Tensor, t: float, rescale_k: float, rescale_sigma: float) -> torch.Tensor:
if t < 1:
snr = (1 - t) ** 2 / (t ** 2)
ratio = (snr * rescale_sigma ** 2 + 1) / (snr * rescale_sigma ** 2 / rescale_k + 1)
return 1 / (1 - t) * (ratio * ((1 - t) * v_pred + x_t) - x_t)
return v_pred
def _get_first_n_kv_cache(kv_cache: List[List[torch.Tensor]], n: int) -> List[List[torch.Tensor]]:
return [[kv_cache[i][0][:n], kv_cache[i][1][:n]] for i in range(len(kv_cache))]
def _multiply_speaker_kv_cache(
kv_cache: List[List[torch.Tensor]],
scale: float,
text_length: int,
max_layers: int = 24,
) -> List[List[torch.Tensor]]:
# multiplies speaker kv cache by scale
# speaker keys start after text keys (at position text_length)
for i in range(min(max_layers, len(kv_cache))):
for j in range(len(kv_cache[i])):
kv_cache[i][j][:, text_length:] *= scale
@torch.inference_mode()
def sample_euler_cfg(
model: EchoDiT,
speaker_latent: torch.Tensor,
speaker_mask: torch.Tensor,
text_input_ids: torch.Tensor,
text_mask: torch.Tensor,
rng_seed: int,
num_steps: int,
cfg_scale: float,
cfg_min_t: float,
cfg_max_t: float,
truncation_factor: float | None,
rescale_k: float | None,
rescale_sigma: float | None,
speaker_k_scale: float | None,
speaker_k_max_layers: int | None,
speaker_k_min_t: float | None,
block_size: int | None = None,
) -> torch.Tensor:
if block_size is None:
block_size = 640
torch.manual_seed(rng_seed)
INIT_SCALE = 0.999
device, dtype = model.device, model.dtype
batch_size = text_input_ids.shape[0]
t_schedule = torch.linspace(1., 0., num_steps + 1, device=device) * INIT_SCALE
text_input_ids_uncond, text_mask_uncond = _get_uncond_text_input_ids_and_mask(text_input_ids.shape[0], text_input_ids.shape[1], device=device)
speaker_latent_uncond, speaker_mask_uncond = torch.zeros_like(speaker_latent), torch.zeros_like(speaker_mask)
full_text_input_ids = torch.cat([text_input_ids, text_input_ids_uncond], dim=0)
full_text_mask = torch.cat([text_mask, text_mask_uncond], dim=0)
full_speaker_latent = torch.cat([speaker_latent, speaker_latent_uncond], dim=0)
full_speaker_mask = torch.cat([speaker_mask, speaker_mask_uncond], dim=0)
kv_cache_full = model.get_kv_cache(
speaker_latent=full_speaker_latent.to(dtype),
speaker_mask=full_speaker_mask,
text_input_ids=full_text_input_ids,
text_mask=full_text_mask,
) # could make faster by not computing fully / recomputing for unconditional batch elements
kv_cache = _get_first_n_kv_cache(kv_cache_full, batch_size)
if speaker_k_scale is not None:
_multiply_speaker_kv_cache(kv_cache_full, speaker_k_scale, text_input_ids.shape[-1], speaker_k_max_layers)
x_t = torch.randn((batch_size, block_size, 80), device=device, dtype=torch.float32)
if truncation_factor is not None:
x_t = x_t * truncation_factor
for i in range(num_steps):
t, t_next = t_schedule[i], t_schedule[i+1]
has_cfg = ((t >= cfg_min_t) * (t <= cfg_max_t)).item()
if has_cfg:
v_cond, v_uncond = model(
x=torch.cat([x_t, x_t], dim=0).to(dtype),
t=(torch.ones((batch_size * 2,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=full_text_mask,
speaker_latent=None,
speaker_mask=full_speaker_mask,
kv_cache=kv_cache_full,
).float().chunk(2, dim=0)
v_pred = v_cond + cfg_scale * (v_cond - v_uncond)
else:
v_pred = model(
x=x_t.to(dtype),
t=(torch.ones((batch_size,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=text_mask,
speaker_latent=None,
speaker_mask=speaker_mask,
kv_cache=kv_cache,
).float()
if rescale_k is not None and rescale_sigma is not None:
v_pred = _temporal_score_rescale(v_pred, x_t, t, rescale_k, rescale_sigma)
if speaker_k_scale is not None and t_next < speaker_k_min_t and t >= speaker_k_min_t:
_multiply_speaker_kv_cache(kv_cache_full, 1. / speaker_k_scale, text_input_ids.shape[-1], speaker_k_max_layers)
x_t = x_t + v_pred * (t_next - t)
return x_t
@torch.inference_mode()
def sample_euler_cfg_independent_guidances(
model: EchoDiT,
speaker_latent: torch.Tensor,
speaker_mask: torch.Tensor,
text_input_ids: torch.Tensor,
text_mask: torch.Tensor,
rng_seed: int,
num_steps: int,
cfg_scale_text: float,
cfg_scale_speaker: float,
cfg_min_t: float,
cfg_max_t: float,
truncation_factor: float | None,
rescale_k: float | None,
rescale_sigma: float | None,
speaker_k_scale: float | None,
speaker_k_max_layers: int | None,
speaker_k_min_t: float | None,
block_size: int | None = None,
) -> torch.Tensor:
if block_size is None:
block_size = 640
torch.manual_seed(rng_seed)
INIT_SCALE = 0.999
device, dtype = model.device, model.dtype
batch_size = text_input_ids.shape[0]
t_schedule = torch.linspace(1., 0., num_steps + 1, device=device) * INIT_SCALE
text_input_ids_uncond, text_mask_uncond = _get_uncond_text_input_ids_and_mask(text_input_ids.shape[0], text_input_ids.shape[1], device=device)
speaker_latent_uncond, speaker_mask_uncond = torch.zeros_like(speaker_latent), torch.zeros_like(speaker_mask)
full_text_input_ids = torch.cat([text_input_ids, text_input_ids_uncond, text_input_ids], dim=0)
full_text_mask = torch.cat([text_mask, text_mask_uncond, text_mask], dim=0)
full_speaker_latent = torch.cat([speaker_latent, speaker_latent, speaker_latent_uncond], dim=0)
full_speaker_mask = torch.cat([speaker_mask, speaker_mask, speaker_mask_uncond], dim=0)
kv_cache_full = model.get_kv_cache(
speaker_latent=full_speaker_latent.to(dtype),
speaker_mask=full_speaker_mask,
text_input_ids=full_text_input_ids,
text_mask=full_text_mask,
)
kv_cache = _get_first_n_kv_cache(kv_cache_full, batch_size)
if speaker_k_scale is not None:
_multiply_speaker_kv_cache(kv_cache_full, speaker_k_scale, text_input_ids.shape[-1], speaker_k_max_layers)
x_t = torch.randn((batch_size, block_size, 80), device=device, dtype=torch.float32)
if truncation_factor is not None:
x_t = x_t * truncation_factor
for i in range(num_steps):
t, t_next = t_schedule[i], t_schedule[i+1]
has_cfg = ((t >= cfg_min_t) * (t <= cfg_max_t)).item()
if has_cfg:
v_cond, v_uncond_text, v_uncond_speaker = model(
x=torch.cat([x_t, x_t, x_t], dim=0).to(dtype),
t=(torch.ones((batch_size * 3,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=full_text_mask,
speaker_latent=None,
speaker_mask=full_speaker_mask,
kv_cache=kv_cache_full,
).float().chunk(3, dim=0)
v_pred = v_cond + cfg_scale_text * (v_cond - v_uncond_text) + cfg_scale_speaker * (v_cond - v_uncond_speaker)
else:
v_pred = model(
x=x_t.to(dtype),
t=(torch.ones((batch_size,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=text_mask,
speaker_latent=None,
speaker_mask=speaker_mask,
kv_cache=kv_cache,
).float()
if rescale_k is not None and rescale_sigma is not None:
v_pred = _temporal_score_rescale(v_pred, x_t, t, rescale_k, rescale_sigma)
if speaker_k_scale is not None and t_next < speaker_k_min_t and t >= speaker_k_min_t:
_multiply_speaker_kv_cache(kv_cache_full, 1. / speaker_k_scale, text_input_ids.shape[-1], speaker_k_max_layers)
x_t = x_t + v_pred * (t_next - t)
return x_t
@torch.inference_mode()
def sample_euler_cfg_alternating_guidances(
model: EchoDiT,
speaker_latent: torch.Tensor,
speaker_mask: torch.Tensor,
text_input_ids: torch.Tensor,
text_mask: torch.Tensor,
rng_seed: int,
num_steps: int,
cfg_scale_text: float,
cfg_scale_speaker: float,
cfg_min_t: float,
cfg_max_t: float,
truncation_factor: float | None,
rescale_k: float | None,
rescale_sigma: float | None,
speaker_k_scale: float | None,
speaker_k_max_layers: int | None,
speaker_k_min_t: float | None,
block_size: int | None = None,
) -> torch.Tensor:
if block_size is None:
block_size = 640
torch.manual_seed(rng_seed)
INIT_SCALE = 0.999
device, dtype = model.device, model.dtype
batch_size = text_input_ids.shape[0]
t_schedule = torch.linspace(1., 0., num_steps + 1, device=device) * INIT_SCALE
text_input_ids_uncond, text_mask_uncond = _get_uncond_text_input_ids_and_mask(text_input_ids.shape[0], text_input_ids.shape[1], device=device)
# TODO THIS / THE BELOW IS TECHNICALLY INCORRECT, AS IT ASSUMES A CAUSAL TEXT ENCODER (which is not the case)
# IF THE TEXT ENCODER WERE CAUSAL, THEN USING AN UNCOND TEXT MASK ON COND TEXT INPUTS GIVES YOU AN UNCOND STATE DUE TO BOS=0
# HOWEVER, MIGHT NOT MAKE MUCH OF A DIFFERENCE
# CHANGED ALL OTHER SAMPLERS TO USE CORRECT UNCONDITIONAL CACHES
speaker_latent_uncond, speaker_mask_uncond = torch.zeros_like(speaker_latent), torch.zeros_like(speaker_mask)
full_text_input_ids = torch.cat([text_input_ids, text_input_ids], dim=0)
full_text_mask = torch.cat([text_mask, text_mask_uncond], dim=0)
full_speaker_latent = torch.cat([speaker_latent, speaker_latent_uncond], dim=0)
full_speaker_mask = torch.cat([speaker_mask, speaker_mask_uncond], dim=0)
kv_cache_full = model.get_kv_cache(
speaker_latent=full_speaker_latent.to(dtype),
speaker_mask=full_speaker_mask,
text_input_ids=full_text_input_ids,
text_mask=full_text_mask,
)
kv_cache = _get_first_n_kv_cache(kv_cache_full, batch_size)
if speaker_k_scale is not None:
_multiply_speaker_kv_cache(kv_cache_full, speaker_k_scale, text_input_ids.shape[-1], speaker_k_max_layers)
x_t = torch.randn((batch_size, block_size, 80), device=device, dtype=torch.float32)
if truncation_factor is not None:
x_t = x_t * truncation_factor
for i in range(num_steps):
t, t_next = t_schedule[i], t_schedule[i+1]
has_cfg = ((t >= cfg_min_t) * (t <= cfg_max_t)).item()
if has_cfg:
v_cond, v_uncond = model(
x=torch.cat([x_t, x_t], dim=0).to(dtype),
t=(torch.ones((batch_size * 2,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=torch.cat([text_mask, text_mask_uncond if i % 2 == 0 else text_mask], dim=0),
speaker_latent=None,
speaker_mask=torch.cat([speaker_mask, speaker_mask if i % 2 == 0 else speaker_mask_uncond], dim=0),
kv_cache=kv_cache_full,
).float().chunk(2, dim=0)
v_pred = v_cond + (cfg_scale_text if i % 2 == 0 else cfg_scale_speaker) * (v_cond - v_uncond)
else:
v_pred = model(
x=x_t.to(dtype),
t=(torch.ones((batch_size,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=text_mask,
speaker_latent=None,
speaker_mask=speaker_mask,
kv_cache=kv_cache,
).float()
if rescale_k is not None and rescale_sigma is not None:
v_pred = _temporal_score_rescale(v_pred, x_t, t, rescale_k, rescale_sigma)
if speaker_k_scale is not None and t_next < speaker_k_min_t and t >= speaker_k_min_t:
_multiply_speaker_kv_cache(kv_cache_full, 1. / speaker_k_scale, text_input_ids.shape[-1], speaker_k_max_layers)
x_t = x_t + v_pred * (t_next - t)
return x_t
@torch.inference_mode()
def sample_euler_apg_independent_guidances(
model: EchoDiT,
speaker_latent: torch.Tensor,
speaker_mask: torch.Tensor,
text_input_ids: torch.Tensor,
text_mask: torch.Tensor,
rng_seed: int,
num_steps: int,
cfg_scale_text: float,
cfg_scale_speaker: float,
cfg_min_t: float,
cfg_max_t: float,
truncation_factor: float | None,
rescale_k: float | None,
rescale_sigma: float | None,
apg_eta_text: float,
apg_eta_speaker: float,
apg_momentum_text: float | None,
apg_momentum_speaker: float | None,
apg_norm_text: float | None,
apg_norm_speaker: float | None,
speaker_k_scale: float | None,
speaker_k_max_layers: int | None,
speaker_k_min_t: float | None,
block_size: int | None = None,
) -> torch.Tensor:
if block_size is None:
block_size = 640
if apg_momentum_text is None:
apg_momentum_text = 0.0
if apg_momentum_speaker is None:
apg_momentum_speaker = 0.0
torch.manual_seed(rng_seed)
INIT_SCALE = 0.999
device, dtype = model.device, model.dtype
batch_size = text_input_ids.shape[0]
t_schedule = torch.linspace(1., 0., num_steps + 1, device=device) * INIT_SCALE
text_input_ids_uncond, text_mask_uncond = _get_uncond_text_input_ids_and_mask(text_input_ids.shape[0], text_input_ids.shape[1], device=device)
speaker_latent_uncond, speaker_mask_uncond = torch.zeros_like(speaker_latent), torch.zeros_like(speaker_mask)
full_text_input_ids = torch.cat([text_input_ids, text_input_ids_uncond, text_input_ids], dim=0)
full_text_mask = torch.cat([text_mask, text_mask_uncond, text_mask], dim=0)
full_speaker_latent = torch.cat([speaker_latent, speaker_latent, speaker_latent_uncond], dim=0)
full_speaker_mask = torch.cat([speaker_mask, speaker_mask, speaker_mask_uncond], dim=0)
kv_cache_full = model.get_kv_cache(
speaker_latent=full_speaker_latent.to(dtype),
speaker_mask=full_speaker_mask,
text_input_ids=full_text_input_ids,
text_mask=full_text_mask,
)
kv_cache = _get_first_n_kv_cache(kv_cache_full, batch_size)
if speaker_k_scale is not None:
_multiply_speaker_kv_cache(kv_cache_full, speaker_k_scale, text_input_ids.shape[-1], speaker_k_max_layers)
x_t = torch.randn((batch_size, block_size, 80), device=device, dtype=torch.float32)
if truncation_factor is not None:
x_t = x_t * truncation_factor
buf_text = torch.zeros_like(x_t)
buf_speaker = torch.zeros_like(x_t)
for i in range(num_steps):
t, t_next = t_schedule[i], t_schedule[i+1]
has_cfg = ((t >= cfg_min_t) * (t <= cfg_max_t)).item()
if has_cfg:
v_cond, v_uncond_text, v_uncond_speaker = model(
x=torch.cat([x_t, x_t, x_t], dim=0).to(dtype),
t=(torch.ones((batch_size * 3,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=full_text_mask,
speaker_latent=None,
speaker_mask=full_speaker_mask,
kv_cache=kv_cache_full,
).float().chunk(3, dim=0)
x0_cond = x_t - t * v_cond
x0_uncond_text = x_t - t * v_uncond_text
x0_uncond_speaker = x_t - t * v_uncond_speaker
diff_text = x0_cond - x0_uncond_text
diff_speaker = x0_cond - x0_uncond_speaker
buf_text = diff_text + apg_momentum_text * buf_text
diff_text = buf_text
buf_speaker = diff_speaker + apg_momentum_speaker * buf_speaker
diff_speaker = buf_speaker
if apg_norm_text is not None:
nt = torch.sqrt((diff_text * diff_text).sum(dim=tuple(range(1, diff_text.dim())), keepdim=True) + 1e-12)
s = torch.minimum(torch.ones_like(nt), (torch.as_tensor(apg_norm_text, device=device, dtype=diff_text.dtype) / nt))
diff_text = diff_text * s
if apg_norm_speaker is not None:
ns = torch.sqrt((diff_speaker * diff_speaker).sum(dim=tuple(range(1, diff_speaker.dim())), keepdim=True) + 1e-12)
s = torch.minimum(torch.ones_like(ns), (torch.as_tensor(apg_norm_speaker, device=device, dtype=diff_speaker.dtype) / ns))
diff_speaker = diff_speaker * s
c_norm = torch.sqrt((x0_cond * x0_cond).sum(dim=tuple(range(1, x0_cond.dim())), keepdim=True) + 1e-12)
c_hat = x0_cond / c_norm
par_text = (diff_text * c_hat).sum(dim=tuple(range(1, diff_text.dim())), keepdim=True) * c_hat
ort_text = diff_text - par_text
upd_text = ort_text + apg_eta_text * par_text
par_speaker = (diff_speaker * c_hat).sum(dim=tuple(range(1, diff_speaker.dim())), keepdim=True) * c_hat
ort_speaker = diff_speaker - par_speaker
upd_speaker = ort_speaker + apg_eta_speaker * par_speaker
x0_pred = x0_cond + cfg_scale_text * upd_text + cfg_scale_speaker * upd_speaker
v_pred = (x_t - x0_pred) / t
else:
v_pred = model(
x=x_t.to(dtype),
t=(torch.ones((batch_size,), device=device) * t).to(dtype),
text_input_ids=None,
text_mask=text_mask,
speaker_latent=None,
speaker_mask=speaker_mask,
kv_cache=kv_cache,
).float()
if rescale_k is not None and rescale_sigma is not None:
v_pred = _temporal_score_rescale(v_pred, x_t, t, rescale_k, rescale_sigma)
if speaker_k_scale is not None and t_next < speaker_k_min_t and t >= speaker_k_min_t:
_multiply_speaker_kv_cache(kv_cache_full, 1. / speaker_k_scale, text_input_ids.shape[-1], speaker_k_max_layers)
x_t = x_t + v_pred * (t_next - t)
return x_t
# router
class GuidanceMode(Enum):
INDEPENDENT = "independent"
APG = "apg"
JOINT = "joint"
ALTERNATING = "alternating"
def sample_euler_cfg_any(
model: EchoDiT,
speaker_latent: torch.Tensor,
speaker_mask: torch.Tensor,
text_input_ids: torch.Tensor,
text_mask: torch.Tensor,
rng_seed: int,
guidance_mode: GuidanceMode,
num_steps: int,
cfg_scale_text: float,
cfg_scale_speaker: float | None,
cfg_min_t: float,
cfg_max_t: float,
truncation_factor: float | None,
rescale_k: float | None,
rescale_sigma: float | None,
speaker_k_scale: float | None,
speaker_k_min_t: float | None,
speaker_k_max_layers: int | None,
apg_eta_text: float | None,
apg_eta_speaker: float | None,
apg_momentum_text: float | None,
apg_momentum_speaker: float | None,
apg_norm_text: float | None,
apg_norm_speaker: float | None,
block_size: int | None = None,
) -> torch.Tensor:
if guidance_mode == GuidanceMode.INDEPENDENT:
assert cfg_scale_speaker is not None, "cfg_scale_speaker must be provided for independent guidances"
return sample_euler_cfg_independent_guidances(
model=model,
speaker_latent=speaker_latent,
speaker_mask=speaker_mask,
text_input_ids=text_input_ids,
text_mask=text_mask,
rng_seed=rng_seed,
num_steps=num_steps,
cfg_scale_text=cfg_scale_text,
cfg_scale_speaker=cfg_scale_speaker,
cfg_min_t=cfg_min_t,
cfg_max_t=cfg_max_t,
truncation_factor=truncation_factor,
rescale_k=rescale_k,
rescale_sigma=rescale_sigma,
speaker_k_scale=speaker_k_scale,
speaker_k_max_layers=speaker_k_max_layers,
speaker_k_min_t=speaker_k_min_t,
block_size=block_size,
)
elif guidance_mode == GuidanceMode.APG:
assert cfg_scale_speaker is not None, "cfg_scale_speaker must be provided for APG"
assert apg_eta_text is not None, "apg_eta_text must be provided for APG"
assert apg_eta_speaker is not None, "apg_eta_speaker must be provided for APG"
return sample_euler_apg_independent_guidances(
model=model,
speaker_latent=speaker_latent,
speaker_mask=speaker_mask,
text_input_ids=text_input_ids,
text_mask=text_mask,
rng_seed=rng_seed,
num_steps=num_steps,
cfg_scale_text=cfg_scale_text,
cfg_scale_speaker=cfg_scale_speaker,
cfg_min_t=cfg_min_t,
cfg_max_t=cfg_max_t,
truncation_factor=truncation_factor,
rescale_k=rescale_k,
rescale_sigma=rescale_sigma,
apg_eta_text=apg_eta_text,
apg_eta_speaker=apg_eta_speaker,
apg_momentum_text=apg_momentum_text,
apg_momentum_speaker=apg_momentum_speaker,
apg_norm_text=apg_norm_text,
apg_norm_speaker=apg_norm_speaker,
speaker_k_scale=speaker_k_scale,
speaker_k_max_layers=speaker_k_max_layers,
speaker_k_min_t=speaker_k_min_t,
block_size=block_size,
)
elif guidance_mode == GuidanceMode.JOINT:
assert cfg_scale_text == cfg_scale_speaker or cfg_scale_speaker is None, "cfg_scale_text and cfg_scale_speaker must be the same or cfg_scale_speaker must be None"
return sample_euler_cfg(
model=model,
speaker_latent=speaker_latent,
speaker_mask=speaker_mask,
text_input_ids=text_input_ids,
text_mask=text_mask,
rng_seed=rng_seed,
num_steps=num_steps,
cfg_scale=cfg_scale_text,
cfg_min_t=cfg_min_t,
cfg_max_t=cfg_max_t,
truncation_factor=truncation_factor,
rescale_k=rescale_k,
rescale_sigma=rescale_sigma,
speaker_k_scale=speaker_k_scale,
speaker_k_max_layers=speaker_k_max_layers,
speaker_k_min_t=speaker_k_min_t,
block_size=block_size,
)
elif guidance_mode == GuidanceMode.ALTERNATING:
assert cfg_scale_speaker is not None, "cfg_scale_speaker must be provided for alternating guidances"
return sample_euler_cfg_alternating_guidances(
model=model,
speaker_latent=speaker_latent,
speaker_mask=speaker_mask,
text_input_ids=text_input_ids,
text_mask=text_mask,
rng_seed=rng_seed,
num_steps=num_steps,
cfg_scale_text=cfg_scale_text,
cfg_scale_speaker=cfg_scale_speaker,
cfg_min_t=cfg_min_t,
cfg_max_t=cfg_max_t,
truncation_factor=truncation_factor,
rescale_k=rescale_k,
rescale_sigma=rescale_sigma,
speaker_k_scale=speaker_k_scale,
speaker_k_max_layers=speaker_k_max_layers,
speaker_k_min_t=speaker_k_min_t,
block_size=block_size,
)
else:
raise ValueError(f"Unknown guidance mode: {guidance_mode}")
|