Spaces:
Running
on
Zero
Running
on
Zero
File size: 125,810 Bytes
60cc71a e099082 60cc71a e099082 703032d e099082 69058ff 60cc71a e099082 60cc71a e099082 4149510 e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 46f334b e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 4149510 e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 60cc71a e099082 60cc71a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 |
# The code in this file is almost entirely written by LLMs and is much, much, much messier than it needs to be (at this point it's not clear to what extent it is even human-modifiable). We'd hope to improve this for any future local gradio release(s).
import tempfile
import os
import json
import time
import secrets
import logging
from pathlib import Path
from typing import Tuple, Any
from functools import partial
os.environ['HF_HUB_DISABLE_PROGRESS_BARS'] = '1'
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
import warnings
# Suppress torchaudio TorchCodec parameter warnings
warnings.filterwarnings('ignore', message='.*encoding.*parameter is not fully supported by TorchCodec')
warnings.filterwarnings('ignore', message='.*bits_per_sample.*parameter is not directly supported by TorchCodec')
warnings.filterwarnings('ignore', message='.* is not used by TorchCodec AudioEncoder. Format is determined by the file extension.')
import gradio as gr
import numpy as np
import torch
import torchaudio
from huggingface_hub import snapshot_download
import spaces
from inference import (
load_model_from_hf,
load_fish_ae_from_hf,
load_pca_state_from_hf,
load_audio,
ae_reconstruct,
sample_pipeline
)
from samplers import sample_euler_cfg_any, GuidanceMode
import tarfile
# --------------------------------------------------------------------
### Configuration
MODEL_DTYPE = torch.bfloat16
FISH_AE_DTYPE = torch.float32
# FISH_AE_DTYPE = torch.bfloat16 # MAYBE SLIGHTLY WORSE QUALITY, IF YOU HAVE ROOM, MAYBE USE FLOAT32
USE_16_BIT_WAV = True # Save WAV files as 16-bit PCM instead of 32-bit float
# Audio Prompt Library for Custom Audio Panel (included in repo)
AUDIO_PROMPT_FOLDER = Path("./prompt_audio")
# If not on Zero GPU, compile fish_ae encoder/decoder on initialization
COMPILE_FISH_IF_NOT_ON_ZERO_GPU = True
# Silentcipher watermarking configuration
USE_SILENTCIPHER = True # Enable/disable audio watermarking
SILENTCIPHER_MESSAGE = [91, 57, 81, 60, 83] # Watermark message (list of integers)
SILENTCIPHER_SDR = 47 # Message SDR in dB (higher = less perceptible but less robust)
# Get HF token from environment for private model access
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# --------------------------------------------------------------------
# Check if running on Zero GPU (compile incompatible with Zero GPU)
IS_ZEROGPU = os.environ.get("SPACES_ZERO_GPU") is not None
# print("FISH_AE_DTYPE:", FISH_AE_DTYPE)
# print("IS_ZEROGPU:", IS_ZEROGPU)
# if IS_ZEROGPU:
# print("Running on Zero GPU - model compilation disabled")
# else:
# print("Not on Zero GPU - model compilation available")
def _safe_members(tf, prefix):
if not prefix.endswith('/'):
prefix += '/'
for m in tf.getmembers():
if not m.name.startswith(prefix):
continue
p = Path(m.name)
if any(part == '..' for part in p.parts) or p.is_absolute():
continue
yield m
def ensure_tar_tree(repo_id: str, root: str, *, token: str | None = None, max_workers: int = 4):
os.environ.setdefault('HF_HUB_ENABLE_HF_TRANSFER', '1')
from huggingface_hub import snapshot_download
base = Path(snapshot_download(repo_id=repo_id, repo_type='dataset',
allow_patterns=[f'{root}.tar', 'index.jsonl', 'README.md', 'LICENSE'],
resume_download=True, token=token, max_workers=max_workers))
root_dir = base / root
if root_dir.exists():
return root_dir
tar_path = base / f'{root}.tar'
if not tar_path.exists():
raise FileNotFoundError(f'Expected {tar_path} in snapshot')
with tarfile.open(tar_path, 'r') as tf:
tf.extractall(base, members=_safe_members(tf, root))
return root_dir
EARS_PATH = ensure_tar_tree(repo_id="jordand/echo-embeddings-ears-tar", root="EARS", token=HF_TOKEN)
VCTK_PATH = ensure_tar_tree(repo_id="jordand/echo-embeddings-vctk-tar", root="VCTK", token=HF_TOKEN)
EXPRESSO_PATH = ensure_tar_tree(repo_id="jordand/echo-embeddings-expresso-tar", root="Expresso", token=HF_TOKEN)
from huggingface_hub import snapshot_download
HF_CUSTOM_PATH = Path(snapshot_download(
repo_id="jordand/echo-embeddings-custom",
repo_type="dataset",
allow_patterns=[
"HF-Custom/**/speaker_latent.safetensors",
"HF-Custom/**/metadata.json",
"HF-Custom/**/audio.mp3",
],
token=HF_TOKEN,
) + "/HF-Custom")
TEMP_AUDIO_DIR = Path('./temp_gradio_audio')
TEMP_AUDIO_DIR.mkdir(parents=True, exist_ok=True)
# Helper functions for unique filenames and cleanup
def make_stem(prefix: str, user_id: str | None = None) -> str:
"""Create unique filename stem: prefix__user__timestamp_random or prefix__timestamp_random if no user_id."""
ts = int(time.time() * 1000)
rand = secrets.token_hex(4)
if user_id:
return f"{prefix}__{user_id}__{ts}_{rand}"
return f"{prefix}__{ts}_{rand}"
def cleanup_temp_audio(dir_: Path, user_id: str | None, max_age_sec: int = 60 * 5):
"""Remove old files globally and all previous files for this user."""
now = time.time()
# 1) Global TTL: remove any file older than max_age_sec
for p in dir_.glob("*"):
try:
if p.is_file() and (now - p.stat().st_mtime) > max_age_sec:
p.unlink(missing_ok=True)
except Exception:
pass
# 2) Per-user: remove ALL previous files for this user (we don't need to keep any)
if user_id:
for p in dir_.glob(f"*__{user_id}__*"):
try:
if p.is_file():
p.unlink(missing_ok=True)
except Exception:
pass
TEXT_PRESETS_PATH = Path('./text_presets.txt')
SAMPLER_PRESETS_PATH = Path('./sampler_presets.json')
# Global model variables (loaded lazily for Zero GPU)
model = None
model_compiled = None # Separate compiled model for toggling
fish_ae = None
pca_state = None
silentcipher_model = None # Silentcipher watermarking model
_model_compiled = False
def load_models():
"""Lazy load models on first use (required for Zero GPU)."""
global model, model_compiled, fish_ae, pca_state, silentcipher_model
if model is None:
# print("Loading models from HuggingFace...")
model = load_model_from_hf(dtype=MODEL_DTYPE, compile=False, token=HF_TOKEN)
fish_ae = load_fish_ae_from_hf(compile=(COMPILE_FISH_IF_NOT_ON_ZERO_GPU and not IS_ZEROGPU), dtype=FISH_AE_DTYPE, token=HF_TOKEN)
pca_state = load_pca_state_from_hf(token=HF_TOKEN)
# Load silentcipher model if enabled
if USE_SILENTCIPHER:
try:
import silentcipher
# print("Loading silentcipher watermarking model...")
silentcipher_model = silentcipher.get_model(model_type='44.1k', device='cuda')
# print("Silentcipher model loaded successfully!")
except Exception as e:
print(f"Warning: Failed to load silentcipher model: {e}")
print("Continuing without watermarking...")
# print("Models loaded successfully!")
# if not IS_ZEROGPU:
# print("Note: model_compiled will be created when you check 'Compile Model'")
def compile_model(should_compile):
"""Compile the model for faster inference."""
global model, model_compiled, _model_compiled
# If on Zero GPU, compilation is not supported
if IS_ZEROGPU:
return gr.update(value=False, interactive=False), gr.update(value="⚠️ Compile disabled on Zero GPU", visible=True)
if not should_compile:
# User unchecked - clear status and allow toggling
return gr.update(value=False, interactive=True), gr.update(value="", visible=False)
if _model_compiled:
# Already compiled - just show status
return gr.update(value=True, interactive=True), gr.update(value="✓ Model already compiled", visible=True)
# Need to compile - disable checkbox temporarily and show status
return gr.update(value=True, interactive=False), gr.update(value="⏳ Compiling... (1-3 minutes)", visible=True)
def do_compile():
"""Actually perform the compilation by creating a separate compiled model."""
global model, model_compiled, _model_compiled
# Skip if on Zero GPU
if IS_ZEROGPU:
return gr.update(value="⚠️ Compile disabled on Zero GPU", visible=True), gr.update(interactive=False)
if _model_compiled:
return gr.update(value="", visible=False), gr.update(interactive=True)
try:
# Load models first if not already loaded (needed for compilation)
# Since Zero GPU can't compile, we can safely load eagerly here
load_models()
# print("Compiling model... This will take 1-3 minutes on first run.")
# print("Creating a separate compiled model for toggling...")
# Create a compiled version of the model
model_compiled = torch.compile(model)
model_compiled.get_kv_cache = torch.compile(model.get_kv_cache)
model_compiled.get_kv_cache_from_precomputed_speaker_state = torch.compile(model.get_kv_cache_from_precomputed_speaker_state)
_model_compiled = True
# print("Compilation complete! You can now toggle between compiled/uncompiled.")
return gr.update(value="", visible=False), gr.update(interactive=True)
except Exception as e:
print(f"Compilation failed: {str(e)}")
return gr.update(value=f"✗ Compilation failed: {str(e)}", visible=True), gr.update(interactive=True)
def save_audio_with_format(audio_tensor: torch.Tensor, base_path: Path, filename: str, sample_rate: int, audio_format: str) -> Path:
"""Save audio in specified format, fallback to WAV if MP3 encoding fails."""
if audio_format == "mp3":
try:
output_path = base_path / f"{filename}.mp3"
# Try to save as MP3
torchaudio.save(
str(output_path),
audio_tensor,
sample_rate,
format="mp3",
encoding="mp3",
bits_per_sample=None
)
# print(f"Successfully saved as MP3: {output_path}")
return output_path
except Exception as e:
print(f"MP3 encoding failed: {e}, falling back to WAV")
# Fallback to WAV
output_path = base_path / f"{filename}.wav"
if USE_16_BIT_WAV:
torchaudio.save(str(output_path), audio_tensor, sample_rate, encoding="PCM_S", bits_per_sample=16)
else:
torchaudio.save(str(output_path), audio_tensor, sample_rate)
return output_path
else:
# Save as WAV
output_path = base_path / f"{filename}.wav"
if USE_16_BIT_WAV:
torchaudio.save(str(output_path), audio_tensor, sample_rate, encoding="PCM_S", bits_per_sample=16)
else:
torchaudio.save(str(output_path), audio_tensor, sample_rate)
return output_path
@spaces.GPU
def generate_audio(
text_prompt: str,
speaker_st_path: str,
speaker_audio_path: str,
# Sampling parameters
num_steps: int,
rng_seed: int,
cfg_mode: str,
cfg_scale_text: float,
cfg_scale_speaker: float,
cfg_min_t: float,
cfg_max_t: float,
truncation_factor: float,
rescale_k: float,
rescale_sigma: float,
speaker_k_enable: bool,
speaker_k_scale: float,
speaker_k_min_t: float,
speaker_k_max_layers: int,
apg_eta_text: float,
apg_eta_speaker: float,
apg_momentum_text: float,
apg_momentum_speaker: float,
apg_norm_text: str,
apg_norm_speaker: str,
reconstruct_first_30_seconds: bool,
use_custom_shapes: bool,
max_text_byte_length: str,
max_speaker_latent_length: str,
sample_latent_len: str,
audio_format: str,
use_compile: bool,
show_original_audio: bool,
session_id: str,
) -> Tuple[Any, Any, Any, Any, Any, Any, Any, Any]:
"""Generate audio using the model from the notebook."""
# Load models on first use (required for Zero GPU)
load_models()
# Choose which model to use based on compile setting
global model, model_compiled
active_model = model_compiled if (use_compile and model_compiled is not None) else model
if use_compile and model_compiled is None:
print("Warning: Compile requested but model not yet compiled. Using uncompiled model.")
# Cleanup old temp files globally and remove ALL previous files for this user
cleanup_temp_audio(TEMP_AUDIO_DIR, session_id)
# Check if speaker is provided (now optional for zero conditioning)
use_zero_speaker = not speaker_audio_path or speaker_audio_path == ""
if use_zero_speaker:
speaker_audio_path = None
start_time = time.time()
# Parse parameters (most are already numeric from gr.Number)
num_steps_int = min(max(int(num_steps), 1), 80) # Clamp to [1, 80]
rng_seed_int = int(rng_seed) if rng_seed is not None else 0
cfg_scale_text_val = float(cfg_scale_text)
cfg_min_t_val = float(cfg_min_t)
cfg_max_t_val = float(cfg_max_t)
truncation_factor_val = float(truncation_factor)
rescale_k_val = float(rescale_k) if rescale_k != 1.0 else None # 1.0 means "off"
rescale_sigma_val = float(rescale_sigma)
# Determine guidance mode
if cfg_mode == "independent":
guidance_mode = GuidanceMode.INDEPENDENT
cfg_scale_speaker_val = float(cfg_scale_speaker) if cfg_scale_speaker is not None else None
apg_eta_text_val = None
apg_eta_speaker_val = None
apg_momentum_text_val = None
apg_momentum_speaker_val = None
apg_norm_text_val = None
apg_norm_speaker_val = None
elif cfg_mode == "alternating":
guidance_mode = GuidanceMode.ALTERNATING
cfg_scale_speaker_val = float(cfg_scale_speaker) if cfg_scale_speaker is not None else None
apg_eta_text_val = None
apg_eta_speaker_val = None
apg_momentum_text_val = None
apg_momentum_speaker_val = None
apg_norm_text_val = None
apg_norm_speaker_val = None
elif cfg_mode == "apg-independent":
guidance_mode = GuidanceMode.APG
cfg_scale_speaker_val = float(cfg_scale_speaker) if cfg_scale_speaker is not None else None
apg_eta_text_val = float(apg_eta_text) if apg_eta_text is not None else None
apg_eta_speaker_val = float(apg_eta_speaker) if apg_eta_speaker is not None else None
apg_momentum_text_val = float(apg_momentum_text) if apg_momentum_text is not None else None
apg_momentum_speaker_val = float(apg_momentum_speaker) if apg_momentum_speaker is not None else None
apg_norm_text_val = float(apg_norm_text) if apg_norm_text.strip() else None
apg_norm_speaker_val = float(apg_norm_speaker) if apg_norm_speaker.strip() else None
else: # "joint-unconditional"
guidance_mode = GuidanceMode.JOINT
# For unconditional, speaker scale must be None
cfg_scale_speaker_val = None
apg_eta_text_val = None
apg_eta_speaker_val = None
apg_momentum_text_val = None
apg_momentum_speaker_val = None
apg_norm_text_val = None
apg_norm_speaker_val = None
# Parse speaker K scale parameters (available for all modes)
if speaker_k_enable:
speaker_k_scale_val = float(speaker_k_scale) if speaker_k_scale is not None else None
speaker_k_min_t_val = float(speaker_k_min_t) if speaker_k_min_t is not None else None
speaker_k_max_layers_val = int(speaker_k_max_layers) if speaker_k_max_layers is not None else None
else:
speaker_k_scale_val = None
speaker_k_min_t_val = None
speaker_k_max_layers_val = None
# Parse custom shapes if enabled
if use_custom_shapes:
# Allow blank/empty values for first two fields (will use None)
pad_to_max_text_seq_len = int(max_text_byte_length) if max_text_byte_length.strip() else None
pad_to_max_speaker_latent_len = int(max_speaker_latent_length) if max_speaker_latent_length.strip() else None
sample_latent_len_val = int(sample_latent_len) if sample_latent_len.strip() else 640
else:
pad_to_max_text_seq_len = 768
pad_to_max_speaker_latent_len = 2560
sample_latent_len_val = 640
# Create sample function with parameters
sample_fn = partial(
sample_euler_cfg_any,
num_steps=num_steps_int,
guidance_mode=guidance_mode,
cfg_scale_text=cfg_scale_text_val,
cfg_scale_speaker=cfg_scale_speaker_val,
cfg_min_t=cfg_min_t_val,
cfg_max_t=cfg_max_t_val,
truncation_factor=truncation_factor_val,
rescale_k=rescale_k_val,
rescale_sigma=rescale_sigma_val,
speaker_k_scale=speaker_k_scale_val,
speaker_k_min_t=speaker_k_min_t_val,
speaker_k_max_layers=speaker_k_max_layers_val,
apg_eta_text=apg_eta_text_val,
apg_eta_speaker=apg_eta_speaker_val,
apg_momentum_text=apg_momentum_text_val,
apg_momentum_speaker=apg_momentum_speaker_val,
apg_norm_text=apg_norm_text_val,
apg_norm_speaker=apg_norm_speaker_val,
block_size=sample_latent_len_val
)
# Load speaker audio if provided
if speaker_audio_path is not None:
speaker_audio = load_audio(speaker_audio_path).cuda()
else:
speaker_audio = None
# Generate audio using raw audio (with selected model - compiled or not)
audio_out = sample_pipeline(
model=active_model,
fish_ae=fish_ae,
pca_state=pca_state,
sample_fn=sample_fn,
text_prompt=text_prompt,
speaker_audio=speaker_audio,
rng_seed=rng_seed_int,
pad_to_max_text_seq_len=pad_to_max_text_seq_len,
pad_to_max_speaker_latent_len=pad_to_max_speaker_latent_len,
)
# Apply silentcipher watermarking if enabled
audio_to_save = audio_out[0].cpu()
if USE_SILENTCIPHER and silentcipher_model is not None:
try:
# print("Applying silentcipher watermark...")
audio_numpy = audio_to_save.squeeze(0).numpy()
encoded_audio, sdr = silentcipher_model.encode_wav(
audio_numpy,
44100,
SILENTCIPHER_MESSAGE,
message_sdr=SILENTCIPHER_SDR
)
audio_to_save = torch.tensor(encoded_audio).unsqueeze(0)
# print(f"Watermark applied successfully! SDR: {sdr:.2f} dB")
except Exception as e:
print(f"Warning: Watermarking failed: {e}")
print("Saving audio without watermark...")
# Save generated audio with format selection (unique filename per session)
stem = make_stem("generated", session_id)
output_path = save_audio_with_format(
audio_to_save,
TEMP_AUDIO_DIR,
stem,
44100,
audio_format
)
# Calculate generation time
generation_time = time.time() - start_time
time_str = f"⏱️ Total generation time: {generation_time:.2f}s"
# Format text prompt for display
text_display = f"**Text Prompt:**\n\n{text_prompt}"
# Prepare reconstruction and original audio based on checkboxes
recon_output_path = None
original_output_path = None
# Optionally reconstruct first 30 seconds for reference
if reconstruct_first_30_seconds and speaker_audio_path:
audio_recon = ae_reconstruct(
fish_ae=fish_ae,
pca_state=pca_state,
audio=torch.nn.functional.pad(
speaker_audio[..., :2048 * 640],
(0, max(0, 2048 * 640 - speaker_audio.shape[-1]))
)[None],
)[..., :speaker_audio.shape[-1]]
# Save reconstruction with same format (unique filename per session)
recon_stem = make_stem("speaker_recon", session_id)
recon_output_path = save_audio_with_format(
audio_recon.cpu()[0],
TEMP_AUDIO_DIR,
recon_stem,
44100,
audio_format
)
# Optionally show original audio (2-minute cropped mono)
if show_original_audio and speaker_audio_path:
# Save original audio with same format (unique filename per session)
original_stem = make_stem("original_audio", session_id)
original_output_path = save_audio_with_format(
speaker_audio.cpu(),
TEMP_AUDIO_DIR,
original_stem,
44100,
audio_format
)
# Return results with visibility control for accordions
show_reference_section = (show_original_audio or reconstruct_first_30_seconds) and speaker_audio_path is not None
return (
gr.update(),
gr.update(value=str(output_path), visible=True),
gr.update(value=text_display, visible=True),
gr.update(value=str(original_output_path) if original_output_path else None, visible=True),
gr.update(value=time_str, visible=True),
gr.update(value=str(recon_output_path) if recon_output_path else None, visible=True),
gr.update(visible=(show_original_audio and speaker_audio_path is not None)), # original_accordion visibility
gr.update(visible=(reconstruct_first_30_seconds and speaker_audio_path is not None)), # reference_accordion visibility
gr.update(visible=show_reference_section) # reference_audio_header visibility
)
@spaces.GPU
def generate_audio_simple(
text_prompt: str,
speaker_audio_path: str,
preset_name: str,
rng_seed: int,
num_steps: int,
speaker_kv_enable: bool,
speaker_kv_scale: float,
session_id: str,
) -> Tuple[Any, Any]:
"""Simplified audio generation with preset-based parameters for the Simple View."""
# Load models on first use (required for Zero GPU)
load_models()
# Use compiled model if available, otherwise uncompiled
global model, model_compiled
active_model = model_compiled if model_compiled is not None else model
# Cleanup old temp files
cleanup_temp_audio(TEMP_AUDIO_DIR, session_id)
# Check if speaker is provided
use_zero_speaker = not speaker_audio_path or speaker_audio_path == ""
if use_zero_speaker:
speaker_audio_path = None
start_time = time.time()
# Load preset values
presets = load_sampler_presets()
preset = presets.get(preset_name, {})
# Helper to convert string values to float
def to_float(val, default):
try:
return float(val) if val is not None else default
except (ValueError, TypeError):
return default
# Apply preset values (or use defaults)
num_steps_int = min(max(int(num_steps), 1), 80)
rng_seed_int = int(rng_seed) if rng_seed is not None else 0
cfg_scale_text_val = to_float(preset.get("cfg_scale_text"), 3.0)
cfg_scale_speaker_val = to_float(preset.get("cfg_scale_speaker"), 8.0)
cfg_min_t_val = to_float(preset.get("cfg_min_t"), 0.5)
cfg_max_t_val = to_float(preset.get("cfg_max_t"), 1.0)
truncation_factor_val = to_float(preset.get("truncation_factor"), 1.0)
rescale_k_raw = to_float(preset.get("rescale_k"), 1.0)
rescale_k_val = rescale_k_raw if rescale_k_raw != 1.0 else None # 1.0 means off
rescale_sigma_val = to_float(preset.get("rescale_sigma"), 3.0)
guidance_mode = GuidanceMode.INDEPENDENT # Simple view always uses independent
# Speaker KV parameters (user override takes precedence)
if speaker_kv_enable:
speaker_k_scale_val = float(speaker_kv_scale) if speaker_kv_scale else 1.5
speaker_k_min_t_val = 0.9
speaker_k_max_layers_val = 24
else:
speaker_k_scale_val = None
speaker_k_min_t_val = None
speaker_k_max_layers_val = None
# Default shapes
pad_to_max_text_seq_len = 768
pad_to_max_speaker_latent_len = 2560
sample_latent_len_val = 640
# Create sample function with parameters
sample_fn = partial(
sample_euler_cfg_any,
num_steps=num_steps_int,
guidance_mode=guidance_mode,
cfg_scale_text=cfg_scale_text_val,
cfg_scale_speaker=cfg_scale_speaker_val,
cfg_min_t=cfg_min_t_val,
cfg_max_t=cfg_max_t_val,
truncation_factor=truncation_factor_val,
rescale_k=rescale_k_val,
rescale_sigma=rescale_sigma_val,
speaker_k_scale=speaker_k_scale_val,
speaker_k_min_t=speaker_k_min_t_val,
speaker_k_max_layers=speaker_k_max_layers_val,
apg_eta_text=None,
apg_eta_speaker=None,
apg_momentum_text=None,
apg_momentum_speaker=None,
apg_norm_text=None,
apg_norm_speaker=None,
block_size=sample_latent_len_val
)
# Load speaker audio if provided
if speaker_audio_path is not None:
speaker_audio = load_audio(speaker_audio_path).cuda()
else:
speaker_audio = None
# Generate audio
audio_out = sample_pipeline(
model=active_model,
fish_ae=fish_ae,
pca_state=pca_state,
sample_fn=sample_fn,
text_prompt=text_prompt,
speaker_audio=speaker_audio,
rng_seed=rng_seed_int,
pad_to_max_text_seq_len=pad_to_max_text_seq_len,
pad_to_max_speaker_latent_len=pad_to_max_speaker_latent_len,
)
# Apply silentcipher watermarking if enabled
audio_to_save = audio_out[0].cpu()
if USE_SILENTCIPHER and silentcipher_model is not None:
try:
audio_numpy = audio_to_save.squeeze(0).numpy()
encoded_audio, sdr = silentcipher_model.encode_wav(
audio_numpy,
44100,
SILENTCIPHER_MESSAGE,
message_sdr=SILENTCIPHER_SDR
)
audio_to_save = torch.tensor(encoded_audio).unsqueeze(0)
except Exception as e:
print(f"Warning: Watermarking failed: {e}")
print("Saving audio without watermark...")
# Save generated audio as WAV (unique filename per session)
stem = make_stem("generated_simple", session_id)
output_path = save_audio_with_format(
audio_to_save,
TEMP_AUDIO_DIR,
stem,
44100,
"wav"
)
# Calculate generation time
generation_time = time.time() - start_time
time_str = f"⏱️ Generated in {generation_time:.1f}s"
return (
gr.update(value=str(output_path), visible=True),
gr.update(value=time_str, visible=True)
)
# UI Helper Functions
def load_speaker_metadata(speaker_id):
"""Load metadata for a speaker from any of their voice folders."""
if not EARS_PATH.exists():
return None
# Find any subfolder for this speaker and load its metadata
for subdir in EARS_PATH.iterdir():
if subdir.is_dir() and subdir.name.startswith(f"{speaker_id}_"):
metadata_path = subdir / "metadata.json"
if metadata_path.exists():
try:
with open(metadata_path, 'r') as f:
data = json.load(f)
return data.get("speaker_metadata", {})
except Exception:
continue
return None
def get_speakers():
"""Get list of unique speakers with their metadata."""
if not EARS_PATH.exists():
return []
speakers_dict = {}
for subdir in sorted(EARS_PATH.iterdir()):
if subdir.is_dir():
# Extract speaker ID (pXXX)
name = subdir.name
if name.startswith('p') and '_' in name:
speaker_id = name.split('_')[0]
if speaker_id not in speakers_dict:
speakers_dict[speaker_id] = None
# Load metadata for each speaker
speakers_with_metadata = []
for speaker_id in sorted(speakers_dict.keys()):
metadata = load_speaker_metadata(speaker_id)
if metadata:
speakers_with_metadata.append({
'id': speaker_id,
'gender': metadata.get('gender', 'unknown'),
'age': metadata.get('age', 'unknown'),
'ethnicity': metadata.get('ethnicity', 'unknown'),
'native_language': metadata.get('native language', 'unknown'),
})
else:
speakers_with_metadata.append({
'id': speaker_id,
'gender': 'unknown',
'age': 'unknown',
'ethnicity': 'unknown',
'native_language': 'unknown',
})
return speakers_with_metadata
def get_speakers_table(search_query=""):
"""Get speakers as table data for Gradio, optionally filtered by search query."""
speakers = get_speakers()
result = []
for s in speakers:
# Abbreviate gender
gender = s['gender']
if gender.lower() == 'male':
gender = 'M'
elif gender.lower() == 'female':
gender = 'F'
else:
gender = gender[0].upper() if gender else '?'
# Apply search filter if provided
if search_query:
search_lower = search_query.lower()
searchable_text = f"{s['id']} {gender} {s['age']} {s['ethnicity']} {s['native_language']}".lower()
if search_lower not in searchable_text:
continue
result.append([s['id'], gender, s['age'], s['ethnicity'], s['native_language']])
return result
def get_audio_length_from_metadata(voice_dir):
"""Get audio length from metadata.json file."""
metadata_path = voice_dir / "metadata.json"
if metadata_path.exists():
try:
with open(metadata_path, 'r') as f:
data = json.load(f)
length = data.get("audio_length_seconds", 0)
return f"{length:.1f}s"
except Exception:
return "N/A"
return "N/A"
def get_freeform_table(speaker_id):
"""Get freeform table for a speaker (single row if exists)."""
if not EARS_PATH.exists() or not speaker_id:
return []
freeform_dir = EARS_PATH / f"{speaker_id}_freeform"
if freeform_dir.exists():
audio_path = freeform_dir / "audio.mp3"
st_path = freeform_dir / "speaker_latent.safetensors"
if audio_path.exists() and st_path.exists():
audio_length = get_audio_length_from_metadata(freeform_dir)
return [["Freeform", audio_length]]
return []
def get_emotions_for_speaker(speaker_id):
"""Get list of emotions with audio lengths available for a given speaker (excluding _joint_)."""
if not EARS_PATH.exists() or not speaker_id:
return []
emotions = []
for subdir in sorted(EARS_PATH.iterdir()):
if subdir.is_dir():
name = subdir.name
# Match pattern: p{speaker_id}_emo_{emotion} (but not _emo_joint_)
if name.startswith(f"{speaker_id}_emo_") and "_joint_" not in name:
# Extract emotion part
parts = name.split('_emo_')
if len(parts) == 2:
emotion = parts[1]
# Verify files exist
audio_path = subdir / "audio.mp3"
st_path = subdir / "speaker_latent.safetensors"
if audio_path.exists() and st_path.exists():
audio_length = get_audio_length_from_metadata(subdir)
emotions.append((emotion, audio_length))
return emotions
def get_emotions_table(speaker_id):
"""Get emotions table for a speaker with audio lengths."""
if not speaker_id:
return []
emotions = get_emotions_for_speaker(speaker_id)
return [[emotion, length] for emotion, length in emotions]
# VCTK Helper Functions
def get_vctk_speakers():
"""Get list of VCTK speakers with their metadata."""
if not VCTK_PATH.exists():
return []
speakers_with_metadata = []
for subdir in sorted(VCTK_PATH.iterdir()):
if subdir.is_dir() and subdir.name.startswith('p'):
speaker_id = subdir.name
audio_path = subdir / "audio.mp3"
st_path = subdir / "speaker_latent.safetensors"
metadata_path = subdir / "metadata.json"
if audio_path.exists() and st_path.exists() and metadata_path.exists():
try:
with open(metadata_path, 'r') as f:
data = json.load(f)
speaker_info = data.get("speaker_info", {})
audio_length = data.get("total_audio_length_seconds", 0)
speakers_with_metadata.append({
'id': speaker_info.get('id', speaker_id),
'gender': speaker_info.get('gender', 'unknown'),
'age': speaker_info.get('age', 'unknown'),
'details': speaker_info.get('details', 'unknown'),
'audio_length': f"{audio_length:.1f}s"
})
except Exception:
continue
return speakers_with_metadata
def get_vctk_speakers_table(search_query=""):
"""Get VCTK speakers as table data for Gradio, optionally filtered by search query."""
speakers = get_vctk_speakers()
result = []
for s in speakers:
# Abbreviate gender
gender = s['gender']
if gender.lower() == 'male' or gender == 'M':
gender = 'M'
elif gender.lower() == 'female' or gender == 'F':
gender = 'F'
else:
gender = gender[0].upper() if gender else '?'
# Apply search filter if provided
if search_query:
search_lower = search_query.lower()
searchable_text = f"{s['id']} {gender} {s['age']} {s['details']} {s['audio_length']}".lower()
if search_lower not in searchable_text:
continue
result.append([s['id'], gender, s['age'], s['details'], s['audio_length']])
return result
def load_text_presets():
"""Load text presets from file with category and word count."""
if TEXT_PRESETS_PATH.exists():
with open(TEXT_PRESETS_PATH, 'r', encoding='utf-8') as f:
lines = [line.strip() for line in f if line.strip()]
result = []
for line in lines:
# Split on first " | " to separate category from text
if " | " in line:
parts = line.split(" | ", 1)
category = parts[0]
text = parts[1]
else:
# Fallback if no category
category = "Uncategorized"
text = line
# Calculate word count
word_count = len(text.split())
result.append([category, str(word_count), text])
return result
return []
def search_speakers(search_query):
"""Filter speakers table based on search query."""
filtered_data = get_speakers_table(search_query)
return gr.update(value=filtered_data)
def select_speaker_from_table(evt: gr.SelectData, table_data):
"""Handle speaker selection - populate freeform and emotions tables."""
if evt.value and table_data is not None:
# evt.index is a tuple/list (row, col), we need the row to get the speaker ID
if isinstance(evt.index, (tuple, list)) and len(evt.index) >= 2:
row_index = evt.index[0]
else:
row_index = evt.index
# Use the actual displayed (filtered) table data (pandas DataFrame)
if isinstance(row_index, int) and row_index < len(table_data):
speaker_row = table_data.iloc[row_index]
speaker_id = speaker_row.iloc[0] # First column is the ID
# Format selection display - clean and simple
gender_full = "Male" if speaker_row.iloc[1] == "M" else "Female" if speaker_row.iloc[1] == "F" else speaker_row.iloc[1]
selection_text = f"Selected Speaker: {speaker_id}\n{gender_full} • {speaker_row.iloc[2]} • {speaker_row.iloc[3]}"
# Get freeform and emotions data
freeform_data = get_freeform_table(speaker_id)
emotions_data = get_emotions_table(speaker_id)
return (
gr.update(value=selection_text, visible=True), # Show speaker selection
gr.update(value=freeform_data, visible=True), # Update freeform table
gr.update(value=emotions_data, visible=True), # Update emotions table
gr.update(value=speaker_id), # Store speaker ID
gr.update(value=None), # Clear audio preview
gr.update(value=""), # Clear safetensors path
gr.update(value=""), # Clear audio path
gr.update(value="", visible=False) # Clear voice selection display
)
return (
gr.update(value="", visible=False),
gr.update(value=[], visible=True),
gr.update(value=[], visible=True),
gr.update(value=""),
gr.update(value=None),
gr.update(value=""),
gr.update(value=""),
gr.update(value="", visible=False)
)
def select_freeform_from_table(evt: gr.SelectData, speaker_id: str):
"""Handle freeform selection from table - load freeform voice files."""
if speaker_id:
voice_name = f"{speaker_id}_freeform"
voice_dir = EARS_PATH / voice_name
audio_path = str(voice_dir / "audio.mp3")
st_path = str(voice_dir / "speaker_latent.safetensors")
if voice_dir.exists():
# Format freeform display
freeform_display = f"Selected: Freeform\n{speaker_id}_freeform"
return (
gr.update(value=freeform_display, visible=True), # Show freeform selection
gr.update(value=audio_path), # Update audio player
gr.update(value=st_path), # Update safetensors path
gr.update(value=audio_path) # Update audio path for reconstruction
)
return gr.update(value="", visible=False), gr.update(value=None), gr.update(value=""), gr.update(value="")
def select_emotion_from_table(evt: gr.SelectData, speaker_id: str):
"""Handle emotion selection - load voice files."""
if evt.value and speaker_id:
# evt.index is (row, col) - get the row to extract emotion from first column
if isinstance(evt.index, (tuple, list)) and len(evt.index) >= 2:
row_index = evt.index[0]
else:
row_index = 0
# Get emotions data and extract the emotion name from first column
emotions_data = get_emotions_table(speaker_id)
if isinstance(row_index, int) and row_index < len(emotions_data):
emotion = emotions_data[row_index][0] # First column is emotion name
voice_name = f"{speaker_id}_emo_{emotion}"
voice_dir = EARS_PATH / voice_name
audio_path = str(voice_dir / "audio.mp3")
st_path = str(voice_dir / "speaker_latent.safetensors")
if voice_dir.exists():
# Format emotion display - clean and simple
emotion_display = f"Selected Emotion: {emotion.title()}\n{speaker_id}_emo_{emotion}"
return (
gr.update(value=emotion_display, visible=True), # Show emotion selection
gr.update(value=audio_path), # Update audio player
gr.update(value=st_path), # Update safetensors path
gr.update(value=audio_path) # Update audio path for reconstruction
)
return gr.update(value="", visible=False), gr.update(value=None), gr.update(value=""), gr.update(value="")
def select_vctk_speaker_from_table(evt: gr.SelectData, table_data):
"""Handle VCTK speaker selection - load voice files directly."""
if evt.value and table_data is not None:
# evt.index is a tuple/list (row, col), we need the row to get the speaker ID
if isinstance(evt.index, (tuple, list)) and len(evt.index) >= 2:
row_index = evt.index[0]
else:
row_index = evt.index
# Use the actual displayed (filtered) table data (pandas DataFrame)
if isinstance(row_index, int) and row_index < len(table_data):
speaker_row = table_data.iloc[row_index]
speaker_id = speaker_row.iloc[0] # First column is the ID
# Load voice files from VCTK
voice_dir = VCTK_PATH / speaker_id
audio_path = str(voice_dir / "audio.mp3")
st_path = str(voice_dir / "speaker_latent.safetensors")
if voice_dir.exists():
# Format selection display
gender_full = "Male" if speaker_row.iloc[1] == "M" else "Female" if speaker_row.iloc[1] == "F" else speaker_row.iloc[1]
selection_text = f"Selected Speaker: {speaker_id}\n{gender_full} • {speaker_row.iloc[2]} • {speaker_row.iloc[3]}"
return (
gr.update(value=selection_text, visible=True), # Show speaker selection
gr.update(value=speaker_id), # Store speaker ID
gr.update(value=audio_path), # Update audio player
gr.update(value=st_path), # Update safetensors path
gr.update(value=audio_path) # Update audio path for reconstruction
)
return (
gr.update(value="", visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=""),
gr.update(value="")
)
def search_vctk_speakers(search_query):
"""Filter VCTK speakers table based on search query."""
filtered_data = get_vctk_speakers_table(search_query)
return gr.update(value=filtered_data)
# Expresso Helper Functions
def get_expresso_speakers():
"""Get list of all Expresso speakers with their metadata."""
if not EXPRESSO_PATH.exists():
return []
speakers_with_metadata = []
for subdir in sorted(EXPRESSO_PATH.iterdir()):
if subdir.is_dir() and subdir.name.startswith('expresso_'):
speaker_id = subdir.name
audio_path = subdir / "audio.mp3"
st_path = subdir / "speaker_latent.safetensors"
metadata_path = subdir / "metadata.json"
if audio_path.exists() and st_path.exists() and metadata_path.exists():
try:
with open(metadata_path, 'r') as f:
data = json.load(f)
audio_length = data.get("audio_length_seconds", 0)
speakers_with_metadata.append({
'id': speaker_id,
'type': data.get('type', 'unknown'),
'speakers': data.get('speakers', 'unknown'),
'style': data.get('style', 'unknown'),
'audio_length': f"{audio_length:.1f}s"
})
except Exception:
continue
return speakers_with_metadata
def get_expresso_speakers_table(search_query=""):
"""Get Expresso speakers as table data for Gradio, optionally filtered by search query."""
speakers = get_expresso_speakers()
result = []
for s in speakers:
# Apply search filter if provided
if search_query:
search_lower = search_query.lower()
# Search in all fields
if not any(search_lower in str(v).lower() for v in [s['id'], s['type'], s['speakers'], s['style']]):
continue
result.append([
s['id'],
s['type'],
s['speakers'],
s['style'],
s['audio_length']
])
return result
def select_expresso_speaker_from_table(evt: gr.SelectData, table_data):
"""Handle Expresso speaker selection - load voice files directly."""
if evt.value and table_data is not None:
# evt.index is a tuple/list (row, col), we need the row to get the speaker ID
if isinstance(evt.index, (tuple, list)) and len(evt.index) >= 2:
row_index = evt.index[0]
else:
row_index = evt.index
# Use the actual displayed (filtered) table data (pandas DataFrame)
if isinstance(row_index, int) and row_index < len(table_data):
speaker_row = table_data.iloc[row_index]
speaker_id = speaker_row.iloc[0] # First column is the ID
# Load voice files from Expresso
voice_dir = EXPRESSO_PATH / speaker_id
audio_path = str(voice_dir / "audio.mp3")
st_path = str(voice_dir / "speaker_latent.safetensors")
if voice_dir.exists():
# Format selection display
selection_text = f"Selected Voice: {speaker_id}\nType: {speaker_row.iloc[1]} • Speakers: {speaker_row.iloc[2]} • Style: {speaker_row.iloc[3]}"
return (
gr.update(value=selection_text, visible=True), # Show speaker selection
gr.update(value=speaker_id), # Store speaker ID
gr.update(value=audio_path), # Update audio player
gr.update(value=st_path), # Update safetensors path
gr.update(value=audio_path) # Update audio path for reconstruction
)
return (
gr.update(value="", visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=""),
gr.update(value="")
)
def search_expresso_speakers(search_query):
"""Filter Expresso speakers table based on search query."""
filtered_data = get_expresso_speakers_table(search_query)
return gr.update(value=filtered_data)
# HF-Custom Helper Functions
def get_hf_custom_speakers():
"""Get list of all HF-Custom speakers with their metadata."""
if not HF_CUSTOM_PATH.exists():
return []
speakers_with_metadata = []
for subdir in sorted(HF_CUSTOM_PATH.iterdir()):
if subdir.is_dir():
speaker_name = subdir.name
audio_path = subdir / "audio.mp3"
st_path = subdir / "speaker_latent.safetensors"
metadata_path = subdir / "metadata.json"
if audio_path.exists() and st_path.exists() and metadata_path.exists():
try:
with open(metadata_path, 'r') as f:
data = json.load(f)
audio_length = data.get("audio_duration_seconds", 0)
speakers_with_metadata.append({
'name': data.get('speaker_name', speaker_name),
'dataset': data.get('dataset_name', ''),
'description': data.get('speaker_description', ''),
'audio_length': f"{audio_length:.1f}s"
})
except Exception:
continue
return speakers_with_metadata
def get_hf_custom_speakers_table(search_query=""):
"""Get HF-Custom speakers as table data for Gradio, optionally filtered by search query."""
speakers = get_hf_custom_speakers()
result = []
for s in speakers:
# Apply search filter if provided
if search_query:
search_lower = search_query.lower()
# Search in all fields
if not any(search_lower in str(v).lower() for v in [s['name'], s['dataset'], s['description']]):
continue
result.append([
s['name'],
s['dataset'],
s['description'],
s['audio_length']
])
return result
def select_hf_custom_speaker_from_table(evt: gr.SelectData, table_data):
"""Handle HF-Custom speaker selection - load voice files directly."""
if evt.value and table_data is not None:
# evt.index is a tuple/list (row, col), we need the row to get the speaker name
if isinstance(evt.index, (tuple, list)) and len(evt.index) >= 2:
row_index = evt.index[0]
else:
row_index = evt.index
# Use the actual displayed (filtered) table data (pandas DataFrame)
if isinstance(row_index, int) and row_index < len(table_data):
speaker_row = table_data.iloc[row_index]
speaker_name = speaker_row.iloc[0] # First column is the name
# Load voice files from HF-Custom
voice_dir = HF_CUSTOM_PATH / speaker_name
audio_path = str(voice_dir / "audio.mp3")
st_path = str(voice_dir / "speaker_latent.safetensors")
if voice_dir.exists():
# Format selection display
dataset_info = f" • {speaker_row.iloc[1]}" if speaker_row.iloc[1] else ""
selection_text = f"Selected Voice: {speaker_name}{dataset_info}\n{speaker_row.iloc[2]}"
return (
gr.update(value=selection_text, visible=True), # Show speaker selection
gr.update(value=speaker_name), # Store speaker name
gr.update(value=audio_path), # Update audio player
gr.update(value=st_path), # Update safetensors path
gr.update(value=audio_path) # Update audio path for reconstruction
)
return (
gr.update(value="", visible=False),
gr.update(value=""),
gr.update(value=None),
gr.update(value=""),
gr.update(value="")
)
def search_hf_custom_speakers(search_query):
"""Filter HF-Custom speakers table based on search query."""
filtered_data = get_hf_custom_speakers_table(search_query)
return gr.update(value=filtered_data)
# Audio Prompt Library functions
AUDIO_EXTS = {".wav", ".mp3", ".m4a", ".ogg", ".flac", ".webm", ".aac", ".opus"}
def get_audio_prompt_files():
"""Get list of audio files from the audio prompt folder."""
if AUDIO_PROMPT_FOLDER is None or not AUDIO_PROMPT_FOLDER.exists():
return []
files = sorted([
f.name for f in AUDIO_PROMPT_FOLDER.iterdir()
if f.is_file() and f.suffix.lower() in AUDIO_EXTS
], key=str.lower)
return [[file] for file in files]
def select_audio_prompt_file(evt: gr.SelectData):
"""Handle audio prompt file selection from table."""
if evt.value and AUDIO_PROMPT_FOLDER is not None:
file_path = AUDIO_PROMPT_FOLDER / evt.value
if file_path.exists():
return gr.update(value=str(file_path))
return gr.update()
def switch_dataset(dataset_name):
"""Switch between Custom Audio Panel, EARS, VCTK, Expresso, and HF-Custom datasets."""
if dataset_name == "Custom Audio Panel":
# Show Custom Audio Panel only, hide all voicebank UI
return (
gr.update(value="", visible=False), # dataset_license_info
gr.update(visible=True), # custom_audio_row
gr.update(visible=False), # voicebank_row
gr.update(visible=False), # voice_type_column
gr.update(visible=True), # ears_column (within voicebank_row)
gr.update(visible=False), # vctk_column
gr.update(visible=False), # expresso_column
gr.update(visible=False), # hf_custom_column
# Clear selections
gr.update(value="", visible=False), # selected_speaker_display
gr.update(value=[]), # freeform_table
gr.update(value=[]), # emotions_table
gr.update(value="", visible=False), # selected_voice_display
gr.update(value="", visible=False), # vctk_speaker_display
gr.update(value="", visible=False), # expresso_speaker_display
gr.update(value="", visible=False), # hf_custom_speaker_display
gr.update(value=""), # selected_speaker_state
gr.update(value=None), # audio_preview
gr.update(value=""), # speaker_st_path_state
gr.update(value="") # speaker_audio_path_state
)
elif dataset_name == "EARS":
# Show EARS UI, hide others, show Voice Type column
license_text = "**EARS Dataset License:** Creative Commons Attribution 4.0 International ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/))"
return (
gr.update(value=license_text, visible=True), # dataset_license_info
gr.update(visible=False), # custom_audio_row
gr.update(visible=True), # voicebank_row
gr.update(visible=True), # voice_type_column (show for EARS)
gr.update(visible=True), # ears_column
gr.update(visible=False), # vctk_column
gr.update(visible=False), # expresso_column
gr.update(visible=False), # hf_custom_column
gr.update(value=""), # selected_speaker_display
gr.update(value=[], visible=True), # freeform_table
gr.update(value=[], visible=True), # emotions_table
gr.update(value="", visible=False), # selected_voice_display
gr.update(value="", visible=False), # vctk_speaker_display
gr.update(value="", visible=False), # expresso_speaker_display
gr.update(value="", visible=False), # hf_custom_speaker_display
gr.update(value=""), # selected_speaker_state
gr.update(value=None), # audio_preview
gr.update(value=""), # speaker_st_path_state
gr.update(value="") # speaker_audio_path_state
)
elif dataset_name == "VCTK":
# Show VCTK UI, hide others, hide Voice Type column
license_text = "**VCTK Dataset License:** Creative Commons Attribution 4.0 International ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/))"
return (
gr.update(value=license_text, visible=True), # dataset_license_info
gr.update(visible=False), # custom_audio_row
gr.update(visible=True), # voicebank_row
gr.update(visible=False), # voice_type_column
gr.update(visible=False), # ears_column
gr.update(visible=True), # vctk_column
gr.update(visible=False), # expresso_column
gr.update(visible=False), # hf_custom_column (hide for VCTK)
gr.update(value=""), # selected_speaker_display
gr.update(value=[], visible=True), # freeform_table
gr.update(value=[], visible=True), # emotions_table
gr.update(value="", visible=False), # selected_voice_display
gr.update(value="", visible=False), # vctk_speaker_display
gr.update(value="", visible=False), # expresso_speaker_display
gr.update(value="", visible=False), # hf_custom_speaker_display
gr.update(value=""), # selected_speaker_state
gr.update(value=None), # audio_preview
gr.update(value=""), # speaker_st_path_state
gr.update(value="") # speaker_audio_path_state
)
elif dataset_name == "Expresso":
# Show Expresso UI, hide others, hide Voice Type column
license_text = "**Expresso Dataset License:** Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International ([CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/))"
return (
gr.update(value=license_text, visible=True), # dataset_license_info
gr.update(visible=False), # custom_audio_row
gr.update(visible=True), # voicebank_row
gr.update(visible=False), # voice_type_column
gr.update(visible=False), # ears_column
gr.update(visible=False), # vctk_column
gr.update(visible=True), # expresso_column
gr.update(visible=False), # hf_custom_column (hide for Expresso)
gr.update(value=""), # selected_speaker_display
gr.update(value=[], visible=True), # freeform_table
gr.update(value=[], visible=True), # emotions_table
gr.update(value="", visible=False), # selected_voice_display
gr.update(value="", visible=False), # vctk_speaker_display
gr.update(value="", visible=False), # expresso_speaker_display
gr.update(value="", visible=False), # hf_custom_speaker_display
gr.update(value=""), # selected_speaker_state
gr.update(value=None), # audio_preview
gr.update(value=""), # speaker_st_path_state
gr.update(value="") # speaker_audio_path_state
)
else: # HF-Custom
# Show HF-Custom UI, hide others, hide Voice Type column
license_text = "**HF-Custom Voices:** Available in dataset cache (information in metadata.json per voice). Also view dataset at [jordand/echo-embeddings-custom](https://huggingface.co/datasets/jordand/echo-embeddings-custom)"
return (
gr.update(value=license_text, visible=True), # dataset_license_info
gr.update(visible=False), # custom_audio_row
gr.update(visible=True), # voicebank_row
gr.update(visible=False), # voice_type_column
gr.update(visible=False), # ears_column
gr.update(visible=False), # vctk_column
gr.update(visible=False), # expresso_column
gr.update(visible=True), # hf_custom_column
gr.update(value=""), # selected_speaker_display
gr.update(value=[], visible=True), # freeform_table
gr.update(value=[], visible=True), # emotions_table
gr.update(value="", visible=False), # selected_voice_display
gr.update(value="", visible=False), # vctk_speaker_display
gr.update(value="", visible=False), # expresso_speaker_display
gr.update(value="", visible=False), # hf_custom_speaker_display
gr.update(value=""), # selected_speaker_state
gr.update(value=None), # audio_preview
gr.update(value=""), # speaker_st_path_state
gr.update(value="") # speaker_audio_path_state
)
def select_text_preset(evt: gr.SelectData):
"""Handle text preset selection - extract text from the row."""
if evt.value:
# Get the row index from the selected cell
if isinstance(evt.index, (tuple, list)) and len(evt.index) >= 2:
row_index = evt.index[0]
else:
row_index = evt.index
# Get all presets and extract the text (column 2) from the selected row
presets_data = load_text_presets()
if isinstance(row_index, int) and row_index < len(presets_data):
text = presets_data[row_index][2] # Column 2 is the text
return gr.update(value=text)
return gr.update()
def update_cfg_visibility(cfg_mode):
"""Update visibility of CFG parameters based on selected mode."""
if cfg_mode == "joint-unconditional":
return (
gr.update(label="Text/Speaker CFG Scale", info="Guidance strength for text and speaker (joint)"),
gr.update(visible=False),
gr.update(visible=False)
)
elif cfg_mode == "apg-independent":
return (
gr.update(label="Text CFG Scale", info="Guidance strength for text"),
gr.update(visible=True),
gr.update(visible=True)
)
else: # independent or alternating
return (
gr.update(label="Text CFG Scale", info="Guidance strength for text"),
gr.update(visible=True),
gr.update(visible=False)
)
def toggle_speaker_k_fields(enabled):
"""Toggle visibility of speaker K row. Hidden components preserve their values automatically."""
return gr.update(visible=enabled)
def toggle_custom_shapes_fields(enabled):
"""Toggle visibility of custom shapes row and reset to defaults if disabled."""
if enabled:
return gr.update(visible=True)
else:
# When disabled, hide the row and reset fields to defaults
return gr.update(visible=False)
def toggle_mode(mode, speaker_k_enable_val, speaker_kv_simple_val):
"""Toggle between simple and advanced modes and sync speaker KV state."""
if mode == "Simple Mode":
# Sync simple checkbox with advanced mode's speaker_k_enable value
return (
gr.update(visible=True), # simple_mode_row (speaker KV checkbox)
gr.update(visible=False), # advanced_mode_compile_column
gr.update(visible=False), # advanced_mode_column (all other parameters)
gr.update(value=speaker_k_enable_val), # sync simple checkbox with advanced
gr.update(value=speaker_k_enable_val), # also update speaker_k_enable (keep same)
)
else: # Advanced Mode
# Sync advanced mode's speaker_k_enable with simple checkbox value
return (
gr.update(visible=False), # simple_mode_row (speaker KV checkbox)
gr.update(visible=True), # advanced_mode_compile_column
gr.update(visible=True), # advanced_mode_column (all other parameters)
gr.update(value=speaker_kv_simple_val), # sync simple checkbox (keep same)
gr.update(value=speaker_kv_simple_val), # sync advanced with simple checkbox
)
def sync_simple_to_advanced(simple_enabled):
"""Sync simple mode speaker KV checkbox to advanced mode controls."""
if simple_enabled:
return (
gr.update(value=True), # speaker_k_enable
gr.update(visible=True), # speaker_k_row
gr.update(value=1.5), # speaker_k_scale
gr.update(value=0.9), # speaker_k_min_t
gr.update(value=24), # speaker_k_max_layers
)
else:
return (
gr.update(value=False), # speaker_k_enable
gr.update(visible=False), # speaker_k_row
gr.update(), # speaker_k_scale (no change)
gr.update(), # speaker_k_min_t (no change)
gr.update(), # speaker_k_max_layers (no change)
)
def apply_core_preset(preset_name):
"""Apply core sampling parameters preset."""
if preset_name == "default":
return [
gr.update(value=0), # rng_seed
gr.update(value=40), # num_steps
gr.update(value="independent"), # cfg_mode
gr.update(value="Custom"), # Set main preset to Custom
]
return [gr.update()] * 4
def apply_cfg_preset(preset_name):
"""Apply CFG guidance preset."""
presets = {
"default": (3.0, 5.0, 0.5, 1.0),
"higher speaker": (3.0, 8.0, 0.5, 1.0),
"large guidances": (8.0, 8.0, 0.5, 1.0),
}
if preset_name not in presets:
return [gr.update()] * 5
text_scale, speaker_scale, min_t, max_t = presets[preset_name]
return [
gr.update(value=text_scale), # cfg_scale_text
gr.update(value=speaker_scale), # cfg_scale_speaker
gr.update(value=min_t), # cfg_min_t
gr.update(value=max_t), # cfg_max_t
gr.update(value="Custom"), # Set main preset to Custom
]
def apply_speaker_kv_preset(preset_name):
"""Apply speaker KV attention control preset."""
if preset_name == "enable":
return [
gr.update(value=True), # speaker_k_enable
gr.update(visible=True), # speaker_k_row
gr.update(value="Custom"), # Set main preset to Custom
]
elif preset_name == "off":
return [
gr.update(value=False), # speaker_k_enable
gr.update(visible=False), # speaker_k_row
gr.update(value="Custom"), # Set main preset to Custom
]
return [gr.update()] * 3
def apply_truncation_preset(preset_name):
"""Apply truncation & temporal rescaling preset."""
presets = {
"flat": (0.8, 1.2, 3.0),
"sharp": (0.9, 0.96, 3.0),
"baseline(sharp)": (1.0, 1.0, 3.0),
}
if preset_name == "custom" or preset_name not in presets:
return [gr.update()] * 4 # Return no changes for custom
truncation, rescale_k, rescale_sigma = presets[preset_name]
return [
gr.update(value=truncation),
gr.update(value=rescale_k),
gr.update(value=rescale_sigma),
gr.update(value="Custom"), # Set main preset to Custom
]
def apply_apg_preset(preset_name):
"""Apply APG parameters preset."""
presets = {
"default": (0.5, 0.5, -0.25, -0.25, "", ""), # default: -0.25 momentum
"no momentum": (0.0, 0.0, 0.0, 0.0, "", ""), # no momentum: 0 momentum
"norms": (0.5, 0.5, -0.25, -0.25, "7.5", "7.5"), # norms: default + 7.5 norms
"no eta": (0.0, 0.0, -0.25, -0.25, "", ""), # no eta: 0 eta
}
if preset_name not in presets:
return [gr.update()] * 7
eta_text, eta_speaker, momentum_text, momentum_speaker, norm_text, norm_speaker = presets[preset_name]
return [
gr.update(value=eta_text), # apg_eta_text
gr.update(value=eta_speaker), # apg_eta_speaker
gr.update(value=momentum_text), # apg_momentum_text
gr.update(value=momentum_speaker), # apg_momentum_speaker
gr.update(value=norm_text), # apg_norm_text
gr.update(value=norm_speaker), # apg_norm_speaker
gr.update(value="Custom"), # Set main preset to Custom
]
def load_sampler_presets():
"""Load sampler presets from JSON file."""
if SAMPLER_PRESETS_PATH.exists():
with open(SAMPLER_PRESETS_PATH, 'r') as f:
return json.load(f)
else:
# Create default presets (will use existing JSON file if it exists)
default_presets = {
"Flat (Independent)": {
"num_steps": "30",
"cfg_mode": "independent",
"cfg_scale_text": "3.0",
"cfg_scale_speaker": "5.0",
"cfg_min_t": "0.5",
"cfg_max_t": "1.0",
"truncation_factor": "0.8",
"rescale_k": "1.2",
"rescale_sigma": "3.0"
},
"Sharp (Independent)": {
"num_steps": "30",
"cfg_mode": "independent",
"cfg_scale_text": "3.0",
"cfg_scale_speaker": "5.0",
"cfg_min_t": "0.5",
"cfg_max_t": "1.0",
"truncation_factor": "0.9",
"rescale_k": "0.96",
"rescale_sigma": "3.0"
},
}
with open(SAMPLER_PRESETS_PATH, 'w') as f:
json.dump(default_presets, f, indent=2)
return default_presets
def apply_sampler_preset(preset_name):
"""Apply a sampler preset to all fields."""
presets = load_sampler_presets()
if preset_name == "Custom" or preset_name not in presets:
return [gr.update()] * 20 # Return no changes for custom
preset = presets[preset_name]
# Determine visibility based on cfg_mode
cfg_mode_value = preset["cfg_mode"]
speaker_visible = (cfg_mode_value != "joint-unconditional")
apg_visible = (cfg_mode_value == "apg-independent")
speaker_k_enabled = preset.get("speaker_k_enable", False)
# Convert string values to numeric where appropriate
def to_num(val, default):
try:
return float(val) if isinstance(val, str) else val
except (ValueError, TypeError):
return default
return [
gr.update(value=int(to_num(preset["num_steps"], 40))),
gr.update(value=preset["cfg_mode"]),
gr.update(value=to_num(preset["cfg_scale_text"], 3.0)),
gr.update(value=to_num(preset["cfg_scale_speaker"], 5.0), visible=speaker_visible),
gr.update(value=to_num(preset["cfg_min_t"], 0.5)),
gr.update(value=to_num(preset["cfg_max_t"], 1.0)),
gr.update(value=to_num(preset["truncation_factor"], 0.8)),
gr.update(value=to_num(preset["rescale_k"], 1.2)), # Now numeric
gr.update(value=to_num(preset["rescale_sigma"], 3.0)),
gr.update(value=speaker_k_enabled),
gr.update(visible=speaker_k_enabled), # speaker_k_row
gr.update(value=to_num(preset.get("speaker_k_scale", "1.5"), 1.5)),
gr.update(value=to_num(preset.get("speaker_k_min_t", "0.9"), 0.9)),
gr.update(value=int(to_num(preset.get("speaker_k_max_layers", "24"), 24))),
gr.update(value=to_num(preset.get("apg_eta_text", "0.0"), 0.0)),
gr.update(value=to_num(preset.get("apg_eta_speaker", "0.0"), 0.0)),
gr.update(value=to_num(preset.get("apg_momentum_text", "0.0"), 0.0)),
gr.update(value=to_num(preset.get("apg_momentum_speaker", "0.0"), 0.0)),
gr.update(value=preset.get("apg_norm_text", "")), # Keep as string (can be empty)
gr.update(value=preset.get("apg_norm_speaker", "")), # Keep as string (can be empty)
]
# Build Gradio Interface
LINK_CSS = """
.preset-inline { display:flex; align-items:baseline; gap:6px; margin-top:-4px; margin-bottom:-12px; }
.preset-inline .title { font-weight:600; font-size:.95rem; }
.preset-inline .dim { color:#666; margin:0 4px; }
/* blue, linky */
a.preset-link { color: #0a5bd8; text-decoration: underline; cursor: pointer; font-weight: 400; }
a.preset-link:hover { text-decoration: none; opacity: 0.8; }
/* Dark mode support for preset links */
.dark a.preset-link,
[data-theme="dark"] a.preset-link {
color: #60a5fa !important;
}
.dark a.preset-link:hover,
[data-theme="dark"] a.preset-link:hover {
color: #93c5fd !important;
}
.dark .preset-inline .dim,
[data-theme="dark"] .preset-inline .dim {
color: #9ca3af !important;
}
/* keep proxy buttons in DOM but invisible */
.proxy-btn { position:absolute; width:0; height:0; overflow:hidden; padding:0 !important; margin:0 !important; border:0 !important; opacity:0; pointer-events:none; }
/* Better contrast for parameter group boxes */
.gr-group {
border: 1px solid #d1d5db !important;
background: #f3f4f6 !important;
}
.dark .gr-group,
[data-theme="dark"] .gr-group {
border: 1px solid #4b5563 !important;
background: #1f2937 !important;
}
/* Highlight generated audio */
.generated-audio-player {
border: 3px solid #667eea !important;
border-radius: 12px !important;
padding: 20px !important;
background: linear-gradient(135deg, rgba(102, 126, 234, 0.08) 0%, rgba(118, 75, 162, 0.05) 100%) !important;
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.2) !important;
margin: 1rem 0 !important;
}
.generated-audio-player > div {
background: transparent !important;
}
/* Make Parameter Mode selector more prominent */
#component-mode-selector {
text-align: center;
padding: 1rem 0;
}
#component-mode-selector label {
font-size: 1.1rem !important;
font-weight: 600 !important;
margin-bottom: 0.5rem !important;
}
#component-mode-selector .wrap {
justify-content: center !important;
}
#component-mode-selector fieldset {
border: 2px solid #e5e7eb !important;
border-radius: 8px !important;
padding: 1rem !important;
background: #f9fafb !important;
}
.dark #component-mode-selector fieldset,
[data-theme="dark"] #component-mode-selector fieldset {
border: 2px solid #4b5563 !important;
background: #1f2937 !important;
}
/* Stronger section separators */
.section-separator {
height: 3px !important;
background: linear-gradient(90deg, transparent 0%, #667eea 20%, #764ba2 80%, transparent 100%) !important;
border: none !important;
margin: 2rem 0 !important;
}
.dark .section-separator,
[data-theme="dark"] .section-separator {
background: linear-gradient(90deg, transparent 0%, #667eea 20%, #764ba2 80%, transparent 100%) !important;
}
/* Section headers styling */
.gradio-container h1,
.gradio-container h2 {
font-weight: 700 !important;
margin-top: 1.5rem !important;
margin-bottom: 1rem !important;
}
/* Highlighted tip box */
.tip-box {
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%) !important;
border-left: 4px solid #f59e0b !important;
border-radius: 8px !important;
padding: 1rem 1.5rem !important;
margin: 1rem 0 !important;
box-shadow: 0 2px 4px rgba(245, 158, 11, 0.1) !important;
}
.tip-box strong {
color: #92400e !important;
}
.dark .tip-box,
[data-theme="dark"] .tip-box {
background: linear-gradient(135deg, #451a03 0%, #78350f 100%) !important;
border-left: 4px solid #f59e0b !important;
}
.dark .tip-box strong,
[data-theme="dark"] .tip-box strong {
color: #fbbf24 !important;
}
"""
JS_CODE = r"""
function () {
// Get a queryable root, regardless of Shadow DOM
const appEl = document.querySelector("gradio-app");
const root = appEl && appEl.shadowRoot ? appEl.shadowRoot : document;
function clickHiddenButtonById(id) {
if (!id) return;
const host = root.getElementById(id);
if (!host) return;
const realBtn = host.querySelector("button, [role='button']") || host;
realBtn.click();
}
// Delegate clicks from any <a class="preset-link" data-fire="...">
root.addEventListener("click", (ev) => {
const a = ev.target.closest("a.preset-link");
if (!a) return;
ev.preventDefault();
ev.stopPropagation();
ev.stopImmediatePropagation();
clickHiddenButtonById(a.getAttribute("data-fire"));
return false;
}, true);
}
"""
def init_session():
"""Initialize session ID for this browser tab/session."""
return secrets.token_hex(8)
def init_and_compile():
"""Initialize session and trigger compilation on page load."""
session_id = secrets.token_hex(8)
# Trigger compilation automatically on page load if not on Zero GPU
# This ensures Simple mode (which defaults compile=True) gets compiled
if not IS_ZEROGPU:
# Just call do_compile directly - it will load models and compile
# Status updates will be visible in Advanced mode, hidden in Simple mode
status_update, checkbox_update = do_compile()
return session_id, status_update, checkbox_update
else:
# On Zero GPU, don't try to compile
return session_id, gr.update(), gr.update()
SIMPLE_CSS = """
.simple-container {
max-width: 1200px;
margin: 0 auto;
}
.simple-generate-btn {
font-size: 1.2rem !important;
padding: 1rem 2rem !important;
}
.simple-output-container {
min-height: 200px;
display: flex;
flex-direction: column;
justify-content: center;
}
"""
with gr.Blocks(title="Echo-TTS", css=LINK_CSS + SIMPLE_CSS, js=JS_CODE) as demo:
gr.Markdown("# Echo-TTS")
gr.Markdown("*Jordan Darefsky, 2025. See technical details [here](https://jordandarefsky.com/blog/2025/echo/). All audio outputs are subject to non-commercial use [CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). (This is a new, simpler Gradio UI; select \"advanced\" below to access the older version (with more hyperpameter control).*")
# Session state for per-user file management (shared between tabs)
session_id_state = gr.State(None)
# ==================== TABS ====================
with gr.Tabs() as main_tabs:
# ==================== SIMPLE VIEW TAB ====================
with gr.TabItem("🎯 Simple", id="simple_tab"):
gr.Markdown("Upload a voice reference (or select a voice from the library), enter text (or select a text preset), and generate!")
gr.Markdown("Generate up to 30 seconds of audio. *If the generated voice does not match the reference speaker, enable Speaker KV in the Generation Parameters section.*")
with gr.Row():
# LEFT: Inputs
with gr.Column(scale=1):
# Voice section - dropdown above audio
with gr.Group():
simple_audio_preset = gr.Dropdown(
choices=["(upload your own or select from dropdown)"] + [f[0] for f in get_audio_prompt_files()],
value="(upload your own or select from dropdown)",
label="Voice",
container=False
)
simple_audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label=None,
max_length=600
)
gr.Markdown("---")
# Text input
simple_text_prompt = gr.Textbox(
label="Text",
info="Enter the text you want the voice to say... or select a text preset below.",
value="[S1] One of the cool things about Echo is that it can generate speech that sounds, I don't know, more human maybe? Like, uh, it can actually generate pretty natural disfluencies, well, at least some of the time. Like if you run it for a few different random seeds, a few different settings, there's uh, there's a decent chance that one of them will actually be pretty good. I mean, it's not perfect, obviously,",
lines=4
)
# RIGHT: Generate + Output
with gr.Column(scale=1):
# Generation parameters accordion
with gr.Accordion("⚙️ Generation Parameters (optional)", open=False):
# Only show independent mode presets in simple view
simple_presets = {k: v for k, v in load_sampler_presets().items() if v.get("cfg_mode") == "independent"}
with gr.Row():
simple_preset = gr.Dropdown(
choices=list(simple_presets.keys()),
value=list(simple_presets.keys())[0] if simple_presets else None,
label="Preset",
scale=3,
interactive=True
)
simple_rng_seed = gr.Number(
label="Seed",
value=0,
precision=0,
scale=1,
min_width=60
)
simple_num_steps = gr.Number(
label="Steps",
value=40,
precision=0,
minimum=5,
maximum=80,
step=5,
scale=1,
min_width=60
)
with gr.Row():
simple_speaker_kv_enable = gr.Checkbox(
label="Enable Speaker KV",
info="Check this if the generated voice does NOT match the reference speaker",
value=False,
scale=1
)
simple_speaker_kv_scale = gr.Number(
label="KV Scale",
info="(Try 1.5, 1.3, ..., 1.1)",
value=1.5,
step=0.1,
visible=False,
scale=1
)
simple_generate_btn = gr.Button(
"🎙️ Generate Audio",
variant="primary",
size="lg"
)
simple_time_display = gr.Markdown("", visible=False)
simple_generated_audio = gr.Audio(
label="Generated Audio",
visible=True,
interactive=False
)
# Text presets - full width below
with gr.Accordion("📝 Text Presets", open=False):
simple_text_presets_table = gr.Dataframe(
value=load_text_presets(),
headers=["Category", "Words", "Text"],
datatype=["str", "str", "str"],
row_count=(4, "fixed"),
col_count=(3, "fixed"),
interactive=False,
column_widths=["10%", "6%", "84%"],
wrap=True
)
gr.Markdown("---")
gr.Markdown("*💡 For more control over generation parameters, switch to the **Advanced** tab.*")
# ==================== ADVANCED VIEW TAB ====================
with gr.TabItem("⚙️ Advanced", id="advanced_tab"):
# Instructions for Simple Mode
with gr.Accordion("📖 Quick Start Instructions", open=False):
gr.Markdown("""
### Simple Mode (Recommended for Beginners)
1. **Pick or upload a voice** - Choose from the voicebank or upload your own audio (up to 2 minutes)
2. **Choose a text prompt preset or enter your own prompt** - What you want the voice to say (the presets are a good guide for format/style)
3. **Select a Sampling preset (optional) ** - The default preset "Independent (High Speaker CFG)" is usually good to start
4. **Click Generate Audio** - Wait for the model to generate your audio
<div class="tip-box">
💡 **Tip:** If the generated voice doesn't match the reference speaker at all, enable "Speaker KV Attention Scaling" and click Generate Audio again.
</div>
### Advanced Mode
Switch to Advanced mode for full control over all generation parameters including CFG scales, sampling steps, truncation, and more.
### Other tips
High CFG settings are recommended but may lead to oversaturation; APG might help with this. Flat settings tend to reduce "impulse" artifacts but might result in worse (blunted/compressed/artifact-y) laughter, breathing, etc. generation.
Echo will try to fit the entire text-prompt into (<=) 30 seconds of audio. If your prompt is very long, the generated speech may be too quick (this is not an issue for shorter text-prompts). For disfluent, single-speaker speech, we recommend trying the reference text beginning with "[S1] ... explore how we can design" as a starting point.
""")
# Hidden state variables to store paths and selection
selected_speaker_state = gr.Textbox(visible=False, value="")
speaker_st_path_state = gr.Textbox(visible=False, value="")
speaker_audio_path_state = gr.Textbox(visible=False, value="")
gr.Markdown("# Voice Selection")
# Dataset selector
dataset_selector = gr.Radio(
choices=["Custom Audio Panel", "EARS", "VCTK", "Expresso", "HF-Custom"],
value="Custom Audio Panel",
label="Select Dataset",
info="Choose which voicebank to use"
)
dataset_license_info = gr.Markdown(
"",
visible=False
)
# Custom Audio Panel UI (visible by default, takes full width)
with gr.Row(visible=True) as custom_audio_row:
# Optional: Audio prompt library table (only shown if AUDIO_PROMPT_FOLDER is configured)
if AUDIO_PROMPT_FOLDER is not None and AUDIO_PROMPT_FOLDER.exists():
with gr.Column(scale=1, min_width=200):
gr.Markdown("#### Audio Library (favorite examples from voicebank datasets)")
audio_prompt_table = gr.Dataframe(
value=get_audio_prompt_files(),
headers=["Filename"],
datatype=["str"],
row_count=(10, "dynamic"),
col_count=(1, "fixed"),
interactive=False,
label="Click to select (or upload your own audio file directly on the right)"
)
with gr.Column(scale=2):
custom_audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Speaker Reference Audio (only first two minutes will be used; leave empty for zero speaker conditioning)",
max_length=600 # Maximum duration in seconds (10 minutes)
)
with gr.Row(visible=False) as voicebank_row:
# Voice selection UI for all voicebank datasets
# EARS UI (visible by default when voicebank_row is shown)
with gr.Column(scale=2, visible=True) as ears_column:
gr.Markdown("### 1. Speakers (EARS)")
selected_speaker_display = gr.Textbox(
value="",
label="",
show_label=False,
interactive=False,
visible=False,
lines=2,
max_lines=2
)
speaker_search = gr.Textbox(
placeholder="Search speakers (by ID, gender, age, ethnicity, language)...",
label="",
show_label=False,
container=False
)
speakers_table = gr.Dataframe(
value=get_speakers_table(),
headers=["ID", "G", "Age", "Ethnicity", "Native Lang"],
datatype=["str", "str", "str", "str", "str"],
row_count=(8, "dynamic"),
col_count=(5, "fixed"),
interactive=False,
label="Click any cell to select",
column_widths=["10%", "8%", "15%", "30%", "37%"]
)
# VCTK UI (hidden by default)
with gr.Column(scale=2, visible=False) as vctk_column:
gr.Markdown("### 1. Speakers (VCTK)")
vctk_speaker_display = gr.Textbox(
value="",
label="",
show_label=False,
interactive=False,
visible=False,
lines=2,
max_lines=2
)
vctk_speaker_search = gr.Textbox(
placeholder="Search speakers (by ID, gender, age, details)...",
label="",
show_label=False,
container=False
)
vctk_speakers_table = gr.Dataframe(
value=get_vctk_speakers_table(),
headers=["ID", "G", "Age", "Details", "Length"],
datatype=["str", "str", "str", "str", "str"],
row_count=(8, "dynamic"),
col_count=(5, "fixed"),
interactive=False,
label="Click any cell to select",
column_widths=["10%", "8%", "12%", "50%", "20%"]
)
# Expresso UI (hidden by default)
with gr.Column(scale=2, visible=False) as expresso_column:
gr.Markdown("### 1. Voices (Expresso)")
expresso_speaker_display = gr.Textbox(
value="",
label="",
show_label=False,
interactive=False,
visible=False,
lines=2,
max_lines=2
)
expresso_speaker_search = gr.Textbox(
placeholder="Search voices (by ID, type, speakers, style)...",
label="",
show_label=False,
container=False
)
expresso_speakers_table = gr.Dataframe(
value=get_expresso_speakers_table(),
headers=["ID", "Type", "Speakers", "Style", "Length"],
datatype=["str", "str", "str", "str", "str"],
row_count=(8, "dynamic"),
col_count=(5, "fixed"),
interactive=False,
label="Click any cell to select",
column_widths=["35%", "15%", "15%", "15%", "20%"]
)
# HF-Custom UI (hidden by default)
with gr.Column(scale=2, visible=False) as hf_custom_column:
gr.Markdown("### 1. Voices (HF-Custom)")
hf_custom_speaker_display = gr.Textbox(
value="",
label="",
show_label=False,
interactive=False,
visible=False,
lines=2,
max_lines=2
)
hf_custom_speaker_search = gr.Textbox(
placeholder="Search voices (by name, dataset, description)...",
label="",
show_label=False,
container=False
)
hf_custom_speakers_table = gr.Dataframe(
value=get_hf_custom_speakers_table(),
headers=["Name", "Dataset", "Description", "Length"],
datatype=["str", "str", "str", "str"],
row_count=(8, "dynamic"),
col_count=(4, "fixed"),
interactive=False,
label="Click any cell to select",
column_widths=["15%", "15%", "50%", "20%"]
)
with gr.Column(scale=1, visible=True) as voice_type_column:
gr.Markdown("### 2. Voice Type")
selected_voice_display = gr.Textbox(
value="",
label="",
show_label=False,
interactive=False,
visible=False,
lines=2,
max_lines=2
)
freeform_table = gr.Dataframe(
value=[],
headers=["Type", "Length"],
datatype=["str", "str"],
row_count=(1, "fixed"),
col_count=(2, "fixed"),
interactive=False,
label="Freeform voice",
visible=True,
column_widths=["60%", "40%"]
)
gr.Markdown("**Emotions:**")
emotions_table = gr.Dataframe(
value=[],
headers=["Emotion", "Length"],
datatype=["str", "str"],
row_count=(8, "dynamic"),
col_count=(2, "fixed"),
interactive=False,
visible=True,
column_widths=["60%", "40%"]
)
with gr.Column(scale=1):
gr.Markdown("### 3. Audio Preview")
audio_preview = gr.Audio(label="Voice Sample", type="filepath", interactive=False)
gr.HTML('<hr class="section-separator">')
gr.Markdown("# Text Prompt")
with gr.Accordion("Text Presets", open=True):
text_presets_table = gr.Dataframe(
value=load_text_presets(),
headers=["Category", "Words", "Preset Text"],
datatype=["str", "str", "str"],
row_count=(3, "dynamic"),
col_count=(3, "fixed"),
interactive=False,
column_widths=["12%", "6%", "82%"]
)
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="[S1] Enter your text prompt here...",
lines=4
)
gr.HTML('<hr class="section-separator">')
gr.Markdown("# Generation")
# Mode selector: Simple or Advanced (outside the accordion, centered and prominent)
with gr.Row():
with gr.Column(scale=1):
pass # Empty column for spacing
with gr.Column(scale=2):
mode_selector = gr.Radio(
choices=["Simple Mode", "Advanced Mode"],
value="Simple Mode",
label="",
info=None,
elem_id="component-mode-selector"
)
with gr.Column(scale=1):
pass # Empty column for spacing
with gr.Accordion("⚙️ Generation Parameters", open=True):
with gr.Row():
presets = load_sampler_presets()
preset_keys = list(presets.keys())
first_preset = preset_keys[0] if preset_keys else "Custom"
preset_dropdown = gr.Dropdown(
choices=["Custom"] + preset_keys,
value=first_preset, # Default to first preset instead of Custom
label="Sampler Preset",
info="Load preset configurations",
scale=2
)
rng_seed = gr.Number(
label="RNG Seed",
value=0,
info="Random seed for starting noise",
precision=0,
scale=1
)
# Simple mode: Speaker KV checkbox on same row (visible by default)
with gr.Column(scale=1, visible=True) as simple_mode_row:
speaker_kv_simple_checkbox = gr.Checkbox(
label="\"Force Speaker\" (Enable Speaker KV Attention Scaling)",
value=False,
info="Enable if generation does not match reference voice (otherwise leave off)"
)
# Advanced mode: Compile and custom shapes checkboxes (hidden by default)
with gr.Column(scale=1, visible=False) as advanced_mode_compile_column:
compile_checkbox = gr.Checkbox(
label="Compile Model",
value=True, # Default to True in simple mode
interactive=not IS_ZEROGPU,
info="Compile disabled on Zero GPU" if IS_ZEROGPU else "~20-30% faster after initial compilation"
)
compile_status = gr.Markdown(
value="⚠️ Compile disabled on Zero GPU" if IS_ZEROGPU else "",
visible=IS_ZEROGPU
)
use_custom_shapes_checkbox = gr.Checkbox(
label="Use Custom Shapes (Advanced)",
value=False,
info="Override default sequence lengths for text, speaker, and sample"
)
# Advanced mode controls (hidden by default)
with gr.Column(visible=False) as advanced_mode_column:
with gr.Row(visible=False) as custom_shapes_row:
max_text_byte_length = gr.Textbox(
label="Max Text Byte Length (padded)",
value="768",
info="Maximum text utf-8 byte sequence length (blank -> no padding)",
scale=1
)
max_speaker_latent_length = gr.Textbox(
label="Max Speaker Latent Length (padded)",
value="2560",
info="Maximum (unpatched)speaker latent length (blank -> no padding), default 2560 = ~30s",
scale=1
)
sample_latent_len = gr.Textbox(
label="Sample Latent Length",
value="640",
info="Maximum sample latent length (EXPERIMENTAL!!! ONLY TRAINED WITH 640 BUT SOMEHOW WORKS WITH < 640 TO GENERATE PREFIXES)",
scale=1
)
with gr.Row():
# Left column: Core Sampling Parameters
with gr.Column(scale=1):
with gr.Group():
gr.HTML("""
<div class="preset-inline">
<span class="title">Core Sampling Parameters</span><span class="dim">(</span>
<a href="javascript:void(0)" class="preset-link" data-fire="core_default">default</a>
<span class="dim">)</span>
</div>
""")
core_preset_default = gr.Button("", elem_id="core_default", elem_classes=["proxy-btn"])
num_steps = gr.Number(label="Number of Steps", value=40, info="Number of sampling steps (consider 20 - 80) (capped at 80)", precision=0, minimum=1, step=5, maximum=80)
cfg_mode = gr.Radio(
choices=[
"independent",
"apg-independent",
"alternating",
"joint-unconditional"
],
value="independent",
label="CFG Mode",
info="Independent (3 NFE), Adaptive Projected Guidance (3 NFE, see https://arxiv.org/abs/2410.02416), Alternating (2 NFE), Joint-Unconditional (2 NFE)"
)
with gr.Group():
gr.HTML("""
<div class="preset-inline">
<span class="title">CFG Guidance</span><span class="dim">(</span>
<a href="javascript:void(0)" class="preset-link" data-fire="cfg_default">default</a>
<span class="dim">,</span>
<a href="javascript:void(0)" class="preset-link" data-fire="cfg_higher">higher speaker</a>
<span class="dim">,</span>
<a href="javascript:void(0)" class="preset-link" data-fire="cfg_large">large guidances(works with apg)</a>
<span class="dim">)</span>
</div>
""")
cfg_preset_default = gr.Button("", elem_id="cfg_default", elem_classes=["proxy-btn"])
cfg_preset_higher_speaker = gr.Button("", elem_id="cfg_higher", elem_classes=["proxy-btn"])
cfg_preset_large_guidances = gr.Button("", elem_id="cfg_large", elem_classes=["proxy-btn"])
with gr.Row():
cfg_scale_text = gr.Number(label="Text CFG Scale", value=3.0, info="Guidance strength for text", minimum=0, step=0.5)
cfg_scale_speaker = gr.Number(label="Speaker CFG Scale", value=5.0, info="Guidance strength for speaker", minimum=0, step=0.5)
with gr.Row():
cfg_min_t = gr.Number(label="CFG Min t", value=0.5, info="(0-1), CFG applied when t >= val", minimum=0, maximum=1, step=0.05)
cfg_max_t = gr.Number(label="CFG Max t", value=1.0, info="(0-1), CFG applied when t <= val", minimum=0, maximum=1, step=0.05)
# Right column: Speaker KV, Truncation + APG
with gr.Column(scale=1):
with gr.Group():
gr.HTML("""
<div class="preset-inline">
<span class="title">Speaker KV Attention Scaling</span><span class="dim">(</span>
<a href="javascript:void(0)" class="preset-link" data-fire="spk_kv_enable">enable if generation does not match reference</a>
<span class="dim">,</span>
<a href="javascript:void(0)" class="preset-link" data-fire="spk_kv_off">off</a>
<span class="dim">)</span>
</div>
""")
spk_kv_preset_enable = gr.Button("", elem_id="spk_kv_enable", elem_classes=["proxy-btn"])
spk_kv_preset_off = gr.Button("", elem_id="spk_kv_off", elem_classes=["proxy-btn"])
speaker_k_enable = gr.Checkbox(label="Enable Speaker KV Scaling", value=False, info="Scale speaker attention key-values; useful when the model-generated audio does not at all match the reference audio (i.e. ignores speaker-reference)")
with gr.Row(visible=False) as speaker_k_row:
speaker_k_scale = gr.Number(label="KV Scale", value=1.5, info="Scale factor", minimum=0, step=0.1)
speaker_k_min_t = gr.Number(label="KV Min t", value=0.9, info="(0-1), scale applied from steps t=1. to val", minimum=0, maximum=1, step=0.05)
speaker_k_max_layers = gr.Number(label="Max Layers", value=24, info="(0-24), scale applied in first N layers", precision=0, minimum=0, maximum=24)
with gr.Group():
gr.HTML("""
<div class="preset-inline">
<span class="title">Truncation & Temporal Rescaling</span><span class="dim">(</span>
<a href="javascript:void(0)" class="preset-link" data-fire="trunc_flat">flat</a>
<span class="dim">,</span>
<a href="javascript:void(0)" class="preset-link" data-fire="trunc_sharp">sharp</a>
<span class="dim">,</span>
<a href="javascript:void(0)" class="preset-link" data-fire="trunc_baseline">baseline(sharp)</a>
<span class="dim">)</span>
</div>
""")
trunc_preset_flat = gr.Button("", elem_id="trunc_flat", elem_classes=["proxy-btn"])
trunc_preset_sharp = gr.Button("", elem_id="trunc_sharp", elem_classes=["proxy-btn"])
trunc_preset_baseline = gr.Button("", elem_id="trunc_baseline", elem_classes=["proxy-btn"])
with gr.Row():
truncation_factor = gr.Number(label="Truncation Factor", value=0.8, info="Multiply initial noise (<1 helps artifacts)", minimum=0, step=0.05)
rescale_k = gr.Number(label="Rescale k", value=1.2, info="<1=sharpen, >1=flatten, 1=off", minimum=0, step=0.05)
rescale_sigma = gr.Number(label="Rescale σ", value=3.0, info="Sigma parameter", minimum=0, step=0.1)
with gr.Group(visible=False) as apg_row:
gr.HTML("""
<div class="preset-inline">
<span class="title">APG Parameters</span><span class="dim">(</span>
<a href="javascript:void(0)" class="preset-link" data-fire="apg_default">default</a>
<span class="dim">,</span>
<a href="javascript:void(0)" class="preset-link" data-fire="apg_no_momentum">no momentum</a>
<span class="dim">,</span>
<a href="javascript:void(0)" class="preset-link" data-fire="apg_norms">norms</a>
<span class="dim">,</span>
<a href="javascript:void(0)" class="preset-link" data-fire="apg_no_eta">no eta</a>
<span class="dim">)</span>
</div>
""")
apg_preset_default = gr.Button("", elem_id="apg_default", elem_classes=["proxy-btn"])
apg_preset_no_momentum = gr.Button("", elem_id="apg_no_momentum", elem_classes=["proxy-btn"])
apg_preset_norms = gr.Button("", elem_id="apg_norms", elem_classes=["proxy-btn"])
apg_preset_no_eta = gr.Button("", elem_id="apg_no_eta", elem_classes=["proxy-btn"])
with gr.Row():
apg_eta_text = gr.Number(label="APG η (text)", value=0.5, info="Eta for text projection (0-1, higher -> more like CFG)", minimum=0, maximum=1, step=0.25)
apg_eta_speaker = gr.Number(label="APG η (speaker)", value=0.5, info="Eta for speaker projection (0-1, higher -> more like CFG)", minimum=0, maximum=1, step=0.25)
with gr.Row() as apg_row2:
apg_momentum_text = gr.Number(label="APG Momentum (text)", value=-0.25, info="Text momentum (can try 0., -.25, -0.5, -0.75...)", step=0.25)
apg_momentum_speaker = gr.Number(label="APG Momentum (speaker)", value=-0.25, info="Speaker momentum (can try 0., -.25, -0.5, -0.75...)", step=0.25)
with gr.Row():
apg_norm_text = gr.Textbox(label="APG Norm (text)", value="", info="Text norm clip (leave blank to disable, can try 7.5, 15.0)")
apg_norm_speaker = gr.Textbox(label="APG Norm (speaker)", value="", info="Speaker norm clip (leave blank to disable, can try 7.5, 15.0)")
# End of advanced_mode_column
with gr.Row(equal_height=True):
audio_format = gr.Radio(
choices=["wav", "mp3"],
value="wav",
label="Format",
scale=1,
min_width=90
)
generate_btn = gr.Button("Generate Audio", variant="primary", size="lg", scale=10)
with gr.Column(scale=1):
show_original_audio = gr.Checkbox(
label="Re-display original audio (full 2-minute cropped mono)",
value=False
)
reconstruct_first_30_seconds = gr.Checkbox(
label="Show Autoencoder Reconstruction (only first 30s of reference)",
value=False
)
gr.HTML('<hr class="section-separator">')
with gr.Accordion("Generated Audio", open=True, visible=True) as generated_section:
generation_time_display = gr.Markdown("", visible=False)
with gr.Group(elem_classes=["generated-audio-player"]):
generated_audio = gr.Audio(label="Generated Audio", visible=True)
text_prompt_display = gr.Markdown("", visible=False)
gr.Markdown("---")
reference_audio_header = gr.Markdown("#### Reference Audio", visible=False)
with gr.Accordion("Original Audio (2 min Cropped Mono)", open=False, visible=False) as original_accordion:
original_audio = gr.Audio(label="Original Reference Audio (2 min)", visible=True)
with gr.Accordion("Autoencoder Reconstruction of First 30s of Reference", open=False, visible=False) as reference_accordion:
reference_audio = gr.Audio(label="Decoded Reference Audio (30s)", visible=True)
# End of Advanced TabItem
# End of Tabs
# Event handlers
# Simple View - Generate button handler
simple_generate_btn.click(
generate_audio_simple,
inputs=[
simple_text_prompt,
simple_audio_input,
simple_preset,
simple_rng_seed,
simple_num_steps,
simple_speaker_kv_enable,
simple_speaker_kv_scale,
session_id_state,
],
outputs=[simple_generated_audio, simple_time_display]
)
# Simple View - Speaker KV checkbox toggle
simple_speaker_kv_enable.change(
lambda enabled: gr.update(visible=enabled),
inputs=[simple_speaker_kv_enable],
outputs=[simple_speaker_kv_scale]
)
# Simple View - Preset dropdown handler
def apply_simple_preset(preset_name):
if not preset_name:
return [gr.update()] * 3
presets = load_sampler_presets()
if preset_name in presets:
preset = presets[preset_name]
steps = int(preset.get("num_steps", 40))
speaker_kv = preset.get("speaker_k_enable", False)
return [
gr.update(value=steps),
gr.update(value=speaker_kv),
gr.update(visible=speaker_kv)
]
return [gr.update()] * 3
simple_preset.change(
apply_simple_preset,
inputs=[simple_preset],
outputs=[simple_num_steps, simple_speaker_kv_enable, simple_speaker_kv_scale]
)
# Simple View - Audio preset dropdown handler
def select_simple_audio_preset(preset_name):
if preset_name == "(upload your own or select from dropdown)" or not preset_name:
return gr.update(value=None) # Clear the audio input
if AUDIO_PROMPT_FOLDER is not None:
file_path = AUDIO_PROMPT_FOLDER / preset_name
if file_path.exists():
return gr.update(value=str(file_path))
return gr.update()
simple_audio_preset.change(
select_simple_audio_preset,
inputs=[simple_audio_preset],
outputs=[simple_audio_input]
)
# Simple View - Text preset table selection handler
def select_simple_text_preset(evt: gr.SelectData):
text_presets = load_text_presets()
if evt.index[0] < len(text_presets):
return gr.update(value=text_presets[evt.index[0]][2])
return gr.update()
simple_text_presets_table.select(
select_simple_text_preset,
outputs=[simple_text_prompt]
)
# Simple View - Reset audio preset dropdown when audio is cleared
simple_audio_input.clear(
lambda: gr.update(value="(upload your own or select from dropdown)"),
outputs=[simple_audio_preset]
)
# Advanced View Event handlers
# Custom Audio Panel - handle audio change to update speaker_audio_path_state
custom_audio_input.change(
lambda audio: gr.update(value=audio if audio else ""),
inputs=[custom_audio_input],
outputs=[speaker_audio_path_state]
)
# Audio prompt library table selection (only if configured)
if AUDIO_PROMPT_FOLDER is not None and AUDIO_PROMPT_FOLDER.exists():
audio_prompt_table.select(
select_audio_prompt_file,
outputs=[custom_audio_input]
)
# Dataset selector: switch between Custom Audio Panel, EARS, VCTK, Expresso, and HF-Custom
dataset_selector.change(
switch_dataset,
inputs=[dataset_selector],
outputs=[
dataset_license_info, custom_audio_row, voicebank_row, voice_type_column,
ears_column, vctk_column, expresso_column, hf_custom_column,
selected_speaker_display, freeform_table, emotions_table,
selected_voice_display, vctk_speaker_display, expresso_speaker_display, hf_custom_speaker_display, selected_speaker_state,
audio_preview, speaker_st_path_state, speaker_audio_path_state
]
)
# EARS: Speaker search
speaker_search.change(
search_speakers,
inputs=[speaker_search],
outputs=[speakers_table]
)
# EARS: Speaker selection - populate freeform and emotions tables
speakers_table.select(
select_speaker_from_table,
inputs=[speakers_table],
outputs=[selected_speaker_display, freeform_table, emotions_table, selected_speaker_state, audio_preview, speaker_st_path_state, speaker_audio_path_state, selected_voice_display]
)
# VCTK: Speaker search
vctk_speaker_search.change(
search_vctk_speakers,
inputs=[vctk_speaker_search],
outputs=[vctk_speakers_table]
)
# VCTK: Speaker selection - load voice files directly
vctk_speakers_table.select(
select_vctk_speaker_from_table,
inputs=[vctk_speakers_table],
outputs=[vctk_speaker_display, selected_speaker_state, audio_preview, speaker_st_path_state, speaker_audio_path_state]
)
# Expresso: Speaker search
expresso_speaker_search.change(
search_expresso_speakers,
inputs=[expresso_speaker_search],
outputs=[expresso_speakers_table]
)
# Expresso: Speaker selection - load voice files directly
expresso_speakers_table.select(
select_expresso_speaker_from_table,
inputs=[expresso_speakers_table],
outputs=[expresso_speaker_display, selected_speaker_state, audio_preview, speaker_st_path_state, speaker_audio_path_state]
)
# HF-Custom: Speaker search
hf_custom_speaker_search.change(
search_hf_custom_speakers,
inputs=[hf_custom_speaker_search],
outputs=[hf_custom_speakers_table]
)
# HF-Custom: Speaker selection - load voice files directly
hf_custom_speakers_table.select(
select_hf_custom_speaker_from_table,
inputs=[hf_custom_speakers_table],
outputs=[hf_custom_speaker_display, selected_speaker_state, audio_preview, speaker_st_path_state, speaker_audio_path_state]
)
# Freeform selection: load freeform voice files
freeform_table.select(
select_freeform_from_table,
inputs=[selected_speaker_state],
outputs=[selected_voice_display, audio_preview, speaker_st_path_state, speaker_audio_path_state]
)
# Emotion selection: load voice files
emotions_table.select(
select_emotion_from_table,
inputs=[selected_speaker_state],
outputs=[selected_voice_display, audio_preview, speaker_st_path_state, speaker_audio_path_state]
)
text_presets_table.select(select_text_preset, outputs=text_prompt)
# Mode selector handler
mode_selector.change(
toggle_mode,
inputs=[mode_selector, speaker_k_enable, speaker_kv_simple_checkbox],
outputs=[simple_mode_row, advanced_mode_compile_column, advanced_mode_column, speaker_kv_simple_checkbox, speaker_k_enable]
).then(
# Sync the row visibility and values after mode switch
lambda enabled: (gr.update(visible=enabled), gr.update(value=1.5 if enabled else 1.5), gr.update(value=0.9 if enabled else 0.9), gr.update(value=24 if enabled else 24)),
inputs=[speaker_k_enable],
outputs=[speaker_k_row, speaker_k_scale, speaker_k_min_t, speaker_k_max_layers]
)
# Simple mode speaker KV checkbox handler
speaker_kv_simple_checkbox.change(
sync_simple_to_advanced,
inputs=[speaker_kv_simple_checkbox],
outputs=[speaker_k_enable, speaker_k_row, speaker_k_scale, speaker_k_min_t, speaker_k_max_layers]
)
cfg_mode.change(update_cfg_visibility, inputs=cfg_mode, outputs=[cfg_scale_text, cfg_scale_speaker, apg_row])
# Speaker K enable handler - toggle row visibility and sync with simple mode
speaker_k_enable.change(
lambda enabled: (gr.update(visible=enabled), gr.update(value=enabled)),
inputs=[speaker_k_enable],
outputs=[speaker_k_row, speaker_kv_simple_checkbox]
)
# Custom shapes enable handler - toggle row visibility and reset to defaults on disable
def toggle_custom_shapes(enabled):
if enabled:
return (
gr.update(visible=True),
gr.update(),
gr.update(),
gr.update(),
)
else:
return (
gr.update(visible=False),
gr.update(value="768"),
gr.update(value="2560"),
gr.update(value="640"),
)
use_custom_shapes_checkbox.change(
toggle_custom_shapes,
inputs=[use_custom_shapes_checkbox],
outputs=[custom_shapes_row, max_text_byte_length, max_speaker_latent_length, sample_latent_len]
)
# Core preset handler
core_preset_default.click(
lambda: apply_core_preset("default"),
outputs=[rng_seed, num_steps, cfg_mode, preset_dropdown]
)
# CFG preset handlers
cfg_preset_default.click(
lambda: apply_cfg_preset("default"),
outputs=[cfg_scale_text, cfg_scale_speaker, cfg_min_t, cfg_max_t, preset_dropdown]
)
cfg_preset_higher_speaker.click(
lambda: apply_cfg_preset("higher speaker"),
outputs=[cfg_scale_text, cfg_scale_speaker, cfg_min_t, cfg_max_t, preset_dropdown]
)
cfg_preset_large_guidances.click(
lambda: apply_cfg_preset("large guidances"),
outputs=[cfg_scale_text, cfg_scale_speaker, cfg_min_t, cfg_max_t, preset_dropdown]
)
# Speaker KV preset handlers
spk_kv_preset_enable.click(
lambda: apply_speaker_kv_preset("enable"),
outputs=[speaker_k_enable, speaker_k_row, preset_dropdown]
)
spk_kv_preset_off.click(
lambda: apply_speaker_kv_preset("off"),
outputs=[speaker_k_enable, speaker_k_row, preset_dropdown]
)
# Truncation preset handlers
trunc_preset_flat.click(
lambda: apply_truncation_preset("flat"),
outputs=[truncation_factor, rescale_k, rescale_sigma, preset_dropdown]
)
trunc_preset_sharp.click(
lambda: apply_truncation_preset("sharp"),
outputs=[truncation_factor, rescale_k, rescale_sigma, preset_dropdown]
)
trunc_preset_baseline.click(
lambda: apply_truncation_preset("baseline(sharp)"),
outputs=[truncation_factor, rescale_k, rescale_sigma, preset_dropdown]
)
# APG preset handlers
apg_preset_default.click(
lambda: apply_apg_preset("default"),
outputs=[apg_eta_text, apg_eta_speaker, apg_momentum_text, apg_momentum_speaker, apg_norm_text, apg_norm_speaker, preset_dropdown]
)
apg_preset_no_momentum.click(
lambda: apply_apg_preset("no momentum"),
outputs=[apg_eta_text, apg_eta_speaker, apg_momentum_text, apg_momentum_speaker, apg_norm_text, apg_norm_speaker, preset_dropdown]
)
apg_preset_norms.click(
lambda: apply_apg_preset("norms"),
outputs=[apg_eta_text, apg_eta_speaker, apg_momentum_text, apg_momentum_speaker, apg_norm_text, apg_norm_speaker, preset_dropdown]
)
apg_preset_no_eta.click(
lambda: apply_apg_preset("no eta"),
outputs=[apg_eta_text, apg_eta_speaker, apg_momentum_text, apg_momentum_speaker, apg_norm_text, apg_norm_speaker, preset_dropdown]
)
# Preset handler
preset_dropdown.change(
apply_sampler_preset,
inputs=preset_dropdown,
outputs=[num_steps, cfg_mode, cfg_scale_text, cfg_scale_speaker, cfg_min_t, cfg_max_t, truncation_factor, rescale_k, rescale_sigma, speaker_k_enable, speaker_k_row, speaker_k_scale, speaker_k_min_t, speaker_k_max_layers, apg_eta_text, apg_eta_speaker, apg_momentum_text, apg_momentum_speaker, apg_norm_text, apg_norm_speaker]
)
# Compile handler
compile_checkbox.change(
compile_model,
inputs=compile_checkbox,
outputs=[compile_checkbox, compile_status]
).then(
do_compile,
outputs=[compile_status, compile_checkbox]
)
generate_btn.click(
generate_audio,
inputs=[
text_prompt,
speaker_st_path_state,
speaker_audio_path_state,
num_steps,
rng_seed,
cfg_mode,
cfg_scale_text,
cfg_scale_speaker,
cfg_min_t,
cfg_max_t,
truncation_factor,
rescale_k,
rescale_sigma,
speaker_k_enable,
speaker_k_scale,
speaker_k_min_t,
speaker_k_max_layers,
apg_eta_text,
apg_eta_speaker,
apg_momentum_text,
apg_momentum_speaker,
apg_norm_text,
apg_norm_speaker,
reconstruct_first_30_seconds,
use_custom_shapes_checkbox,
max_text_byte_length,
max_speaker_latent_length,
sample_latent_len,
audio_format,
compile_checkbox, # Pass compile state to choose model
show_original_audio,
session_id_state,
],
outputs=[generated_section, generated_audio, text_prompt_display, original_audio, generation_time_display, reference_audio, original_accordion, reference_accordion, reference_audio_header]
)
# Initialize session ID and trigger compilation when the page loads
demo.load(init_and_compile, outputs=[session_id_state, compile_status, compile_checkbox]).then(
# Apply the first preset on load
lambda: apply_sampler_preset(list(load_sampler_presets().keys())[0]),
outputs=[num_steps, cfg_mode, cfg_scale_text, cfg_scale_speaker, cfg_min_t, cfg_max_t, truncation_factor, rescale_k, rescale_sigma, speaker_k_enable, speaker_k_row, speaker_k_scale, speaker_k_min_t, speaker_k_max_layers, apg_eta_text, apg_eta_speaker, apg_momentum_text, apg_momentum_speaker, apg_norm_text, apg_norm_speaker]
)
if __name__ == "__main__":
# For HF-Custom, allow the entire dataset cache directory to handle subdirectories
hf_custom_cache = HF_CUSTOM_PATH.parent.parent.parent
allowed_paths = [
str(EARS_PATH),
str(VCTK_PATH),
str(EXPRESSO_PATH),
str(hf_custom_cache),
str(TEMP_AUDIO_DIR),
str(AUDIO_PROMPT_FOLDER)
]
# Enable queue for better handling of concurrent requests on HF Spaces
demo.queue(max_size=20)
demo.launch(allowed_paths=allowed_paths)
|