Spaces:
Runtime error
Runtime error
Joshua Sundance Bailey
commited on
Commit
·
21eccfc
1
Parent(s):
87d6984
create llm_resources.py
Browse files- langchain-streamlit-demo/app.py +34 -131
- langchain-streamlit-demo/llm_resources.py +153 -0
langchain-streamlit-demo/app.py
CHANGED
|
@@ -1,31 +1,16 @@
|
|
| 1 |
from datetime import datetime
|
| 2 |
-
from tempfile import NamedTemporaryFile
|
| 3 |
from typing import Tuple, List, Dict, Any, Union
|
| 4 |
|
| 5 |
import anthropic
|
| 6 |
import langsmith.utils
|
| 7 |
import openai
|
| 8 |
import streamlit as st
|
| 9 |
-
from langchain.callbacks.base import BaseCallbackHandler
|
| 10 |
from langchain.callbacks.tracers.langchain import LangChainTracer, wait_for_all_tracers
|
| 11 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
| 12 |
-
from langchain.chains import RetrievalQA
|
| 13 |
-
from langchain.chains.llm import LLMChain
|
| 14 |
-
from langchain.chat_models import (
|
| 15 |
-
AzureChatOpenAI,
|
| 16 |
-
ChatAnthropic,
|
| 17 |
-
ChatAnyscale,
|
| 18 |
-
ChatOpenAI,
|
| 19 |
-
)
|
| 20 |
-
from langchain.document_loaders import PyPDFLoader
|
| 21 |
-
from langchain.embeddings import OpenAIEmbeddings
|
| 22 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
| 23 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 24 |
-
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
| 25 |
from langchain.schema.document import Document
|
| 26 |
from langchain.schema.retriever import BaseRetriever
|
| 27 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 28 |
-
from langchain.vectorstores import FAISS
|
| 29 |
from langsmith.client import Client
|
| 30 |
from streamlit_feedback import streamlit_feedback
|
| 31 |
|
|
@@ -52,8 +37,7 @@ from defaults import (
|
|
| 52 |
DEFAULT_CHUNK_OVERLAP,
|
| 53 |
DEFAULT_RETRIEVER_K,
|
| 54 |
)
|
| 55 |
-
from
|
| 56 |
-
from summarize import get_rag_summarization_chain
|
| 57 |
|
| 58 |
__version__ = "0.0.13"
|
| 59 |
|
|
@@ -84,61 +68,29 @@ st_init_null(
|
|
| 84 |
"trace_link",
|
| 85 |
)
|
| 86 |
|
| 87 |
-
# ---
|
| 88 |
STMEMORY = StreamlitChatMessageHistory(key="langchain_messages")
|
| 89 |
MEMORY = ConversationBufferMemory(
|
| 90 |
chat_memory=STMEMORY,
|
| 91 |
return_messages=True,
|
| 92 |
memory_key="chat_history",
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
# --- Callbacks ---
|
| 97 |
-
class StreamHandler(BaseCallbackHandler):
|
| 98 |
-
def __init__(self, container, initial_text=""):
|
| 99 |
-
self.container = container
|
| 100 |
-
self.text = initial_text
|
| 101 |
-
|
| 102 |
-
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
| 103 |
-
self.text += token
|
| 104 |
-
self.container.markdown(self.text)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
RUN_COLLECTOR = RunCollectorCallbackHandler()
|
| 108 |
|
| 109 |
|
| 110 |
@st.cache_data
|
| 111 |
-
def
|
| 112 |
uploaded_file_bytes: bytes,
|
| 113 |
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
| 114 |
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
| 115 |
k: int = DEFAULT_RETRIEVER_K,
|
| 116 |
) -> Tuple[List[Document], BaseRetriever]:
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 124 |
-
chunk_size=chunk_size,
|
| 125 |
-
chunk_overlap=chunk_overlap,
|
| 126 |
-
)
|
| 127 |
-
texts = text_splitter.split_documents(documents)
|
| 128 |
-
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
| 129 |
-
|
| 130 |
-
bm25_retriever = BM25Retriever.from_documents(texts)
|
| 131 |
-
bm25_retriever.k = k
|
| 132 |
-
|
| 133 |
-
faiss_vectorstore = FAISS.from_documents(texts, embeddings)
|
| 134 |
-
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": k})
|
| 135 |
-
|
| 136 |
-
ensemble_retriever = EnsembleRetriever(
|
| 137 |
-
retrievers=[bm25_retriever, faiss_retriever],
|
| 138 |
-
weights=[0.5, 0.5],
|
| 139 |
-
)
|
| 140 |
-
|
| 141 |
-
return texts, ensemble_retriever
|
| 142 |
|
| 143 |
|
| 144 |
# --- Sidebar ---
|
|
@@ -351,46 +303,21 @@ with sidebar:
|
|
| 351 |
|
| 352 |
|
| 353 |
# --- LLM Instantiation ---
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
streaming=True,
|
| 370 |
-
max_tokens_to_sample=max_tokens,
|
| 371 |
-
)
|
| 372 |
-
|
| 373 |
-
elif st.session_state.provider == "Anyscale Endpoints":
|
| 374 |
-
st.session_state.llm = ChatAnyscale(
|
| 375 |
-
model_name=model,
|
| 376 |
-
anyscale_api_key=provider_api_key,
|
| 377 |
-
temperature=temperature,
|
| 378 |
-
streaming=True,
|
| 379 |
-
max_tokens=max_tokens,
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
elif AZURE_AVAILABLE and st.session_state.provider == "Azure OpenAI":
|
| 383 |
-
st.session_state.llm = AzureChatOpenAI(
|
| 384 |
-
openai_api_base=AZURE_OPENAI_BASE_URL,
|
| 385 |
-
openai_api_version=AZURE_OPENAI_API_VERSION,
|
| 386 |
-
deployment_name=AZURE_OPENAI_DEPLOYMENT_NAME,
|
| 387 |
-
openai_api_key=AZURE_OPENAI_API_KEY,
|
| 388 |
-
openai_api_type="azure",
|
| 389 |
-
model_version=AZURE_OPENAI_MODEL_VERSION,
|
| 390 |
-
temperature=temperature,
|
| 391 |
-
streaming=True,
|
| 392 |
-
max_tokens=max_tokens,
|
| 393 |
-
)
|
| 394 |
|
| 395 |
# --- Chat History ---
|
| 396 |
if len(STMEMORY.messages) == 0:
|
|
@@ -451,38 +378,15 @@ if st.session_state.llm:
|
|
| 451 |
stream_handler = StreamHandler(message_placeholder)
|
| 452 |
callbacks.append(stream_handler)
|
| 453 |
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
elif document_chat_chain_type == "Summarization":
|
| 461 |
-
return get_rag_summarization_chain(
|
| 462 |
-
prompt,
|
| 463 |
-
st.session_state.retriever,
|
| 464 |
-
st.session_state.llm,
|
| 465 |
-
)
|
| 466 |
-
else:
|
| 467 |
-
return RetrievalQA.from_chain_type(
|
| 468 |
-
llm=st.session_state.llm,
|
| 469 |
-
chain_type=document_chat_chain_type,
|
| 470 |
-
retriever=st.session_state.retriever,
|
| 471 |
-
memory=MEMORY,
|
| 472 |
-
output_key="output_text",
|
| 473 |
-
) | (lambda output: output["output_text"])
|
| 474 |
-
|
| 475 |
-
st.session_state.chain = (
|
| 476 |
-
get_rag_runnable()
|
| 477 |
-
if use_document_chat
|
| 478 |
-
else LLMChain(
|
| 479 |
-
prompt=chat_prompt,
|
| 480 |
-
llm=st.session_state.llm,
|
| 481 |
-
memory=MEMORY,
|
| 482 |
-
)
|
| 483 |
-
| (lambda output: output["text"])
|
| 484 |
)
|
| 485 |
|
|
|
|
| 486 |
try:
|
| 487 |
full_response = st.session_state.chain.invoke(prompt, config)
|
| 488 |
|
|
@@ -492,6 +396,7 @@ if st.session_state.llm:
|
|
| 492 |
icon="❌",
|
| 493 |
)
|
| 494 |
|
|
|
|
| 495 |
if full_response is not None:
|
| 496 |
message_placeholder.markdown(full_response)
|
| 497 |
|
|
@@ -507,6 +412,8 @@ if st.session_state.llm:
|
|
| 507 |
).url
|
| 508 |
except langsmith.utils.LangSmithError:
|
| 509 |
st.session_state.trace_link = None
|
|
|
|
|
|
|
| 510 |
if st.session_state.trace_link:
|
| 511 |
with sidebar:
|
| 512 |
st.markdown(
|
|
@@ -550,10 +457,6 @@ if st.session_state.llm:
|
|
| 550 |
score=score,
|
| 551 |
comment=feedback.get("text"),
|
| 552 |
)
|
| 553 |
-
# feedback = {
|
| 554 |
-
# "feedback_id": str(feedback_record.id),
|
| 555 |
-
# "score": score,
|
| 556 |
-
# }
|
| 557 |
st.toast("Feedback recorded!", icon="📝")
|
| 558 |
else:
|
| 559 |
st.warning("Invalid feedback score.")
|
|
|
|
| 1 |
from datetime import datetime
|
|
|
|
| 2 |
from typing import Tuple, List, Dict, Any, Union
|
| 3 |
|
| 4 |
import anthropic
|
| 5 |
import langsmith.utils
|
| 6 |
import openai
|
| 7 |
import streamlit as st
|
|
|
|
| 8 |
from langchain.callbacks.tracers.langchain import LangChainTracer, wait_for_all_tracers
|
| 9 |
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from langchain.memory import ConversationBufferMemory, StreamlitChatMessageHistory
|
| 11 |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
|
|
| 12 |
from langchain.schema.document import Document
|
| 13 |
from langchain.schema.retriever import BaseRetriever
|
|
|
|
|
|
|
| 14 |
from langsmith.client import Client
|
| 15 |
from streamlit_feedback import streamlit_feedback
|
| 16 |
|
|
|
|
| 37 |
DEFAULT_CHUNK_OVERLAP,
|
| 38 |
DEFAULT_RETRIEVER_K,
|
| 39 |
)
|
| 40 |
+
from llm_resources import get_runnable, get_llm, get_texts_and_retriever, StreamHandler
|
|
|
|
| 41 |
|
| 42 |
__version__ = "0.0.13"
|
| 43 |
|
|
|
|
| 68 |
"trace_link",
|
| 69 |
)
|
| 70 |
|
| 71 |
+
# --- LLM globals ---
|
| 72 |
STMEMORY = StreamlitChatMessageHistory(key="langchain_messages")
|
| 73 |
MEMORY = ConversationBufferMemory(
|
| 74 |
chat_memory=STMEMORY,
|
| 75 |
return_messages=True,
|
| 76 |
memory_key="chat_history",
|
| 77 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
RUN_COLLECTOR = RunCollectorCallbackHandler()
|
| 79 |
|
| 80 |
|
| 81 |
@st.cache_data
|
| 82 |
+
def get_texts_and_retriever_cacheable_wrapper(
|
| 83 |
uploaded_file_bytes: bytes,
|
| 84 |
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
| 85 |
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
| 86 |
k: int = DEFAULT_RETRIEVER_K,
|
| 87 |
) -> Tuple[List[Document], BaseRetriever]:
|
| 88 |
+
return get_texts_and_retriever(
|
| 89 |
+
uploaded_file_bytes=uploaded_file_bytes,
|
| 90 |
+
chunk_size=chunk_size,
|
| 91 |
+
chunk_overlap=chunk_overlap,
|
| 92 |
+
k=k,
|
| 93 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
|
| 96 |
# --- Sidebar ---
|
|
|
|
| 303 |
|
| 304 |
|
| 305 |
# --- LLM Instantiation ---
|
| 306 |
+
llm = get_llm(
|
| 307 |
+
provider=st.session_state.provider,
|
| 308 |
+
model=model,
|
| 309 |
+
provider_api_key=provider_api_key,
|
| 310 |
+
temperature=temperature,
|
| 311 |
+
max_tokens=max_tokens,
|
| 312 |
+
azure_available=AZURE_AVAILABLE,
|
| 313 |
+
azure_dict={
|
| 314 |
+
"AZURE_OPENAI_BASE_URL": AZURE_OPENAI_BASE_URL,
|
| 315 |
+
"AZURE_OPENAI_API_VERSION": AZURE_OPENAI_API_VERSION,
|
| 316 |
+
"AZURE_OPENAI_DEPLOYMENT_NAME": AZURE_OPENAI_DEPLOYMENT_NAME,
|
| 317 |
+
"AZURE_OPENAI_API_KEY": AZURE_OPENAI_API_KEY,
|
| 318 |
+
"AZURE_OPENAI_MODEL_VERSION": AZURE_OPENAI_MODEL_VERSION,
|
| 319 |
+
},
|
| 320 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
# --- Chat History ---
|
| 323 |
if len(STMEMORY.messages) == 0:
|
|
|
|
| 378 |
stream_handler = StreamHandler(message_placeholder)
|
| 379 |
callbacks.append(stream_handler)
|
| 380 |
|
| 381 |
+
st.session_state.chain = get_runnable(
|
| 382 |
+
use_document_chat,
|
| 383 |
+
document_chat_chain_type,
|
| 384 |
+
st.session_state.llm,
|
| 385 |
+
st.session_state.retriever,
|
| 386 |
+
MEMORY,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
)
|
| 388 |
|
| 389 |
+
# --- LLM call ---
|
| 390 |
try:
|
| 391 |
full_response = st.session_state.chain.invoke(prompt, config)
|
| 392 |
|
|
|
|
| 396 |
icon="❌",
|
| 397 |
)
|
| 398 |
|
| 399 |
+
# --- Display output ---
|
| 400 |
if full_response is not None:
|
| 401 |
message_placeholder.markdown(full_response)
|
| 402 |
|
|
|
|
| 412 |
).url
|
| 413 |
except langsmith.utils.LangSmithError:
|
| 414 |
st.session_state.trace_link = None
|
| 415 |
+
|
| 416 |
+
# --- LangSmith Trace Link ---
|
| 417 |
if st.session_state.trace_link:
|
| 418 |
with sidebar:
|
| 419 |
st.markdown(
|
|
|
|
| 457 |
score=score,
|
| 458 |
comment=feedback.get("text"),
|
| 459 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
st.toast("Feedback recorded!", icon="📝")
|
| 461 |
else:
|
| 462 |
st.warning("Invalid feedback score.")
|
langchain-streamlit-demo/llm_resources.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tempfile import NamedTemporaryFile
|
| 2 |
+
from typing import Tuple, List
|
| 3 |
+
|
| 4 |
+
from langchain import LLMChain, FAISS
|
| 5 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
| 6 |
+
from langchain.chains import RetrievalQA
|
| 7 |
+
from langchain.chat_models import (
|
| 8 |
+
AzureChatOpenAI,
|
| 9 |
+
ChatOpenAI,
|
| 10 |
+
ChatAnthropic,
|
| 11 |
+
ChatAnyscale,
|
| 12 |
+
)
|
| 13 |
+
from langchain.document_loaders import PyPDFLoader
|
| 14 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 15 |
+
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
| 16 |
+
from langchain.schema import Document, BaseRetriever
|
| 17 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 18 |
+
|
| 19 |
+
from app import chat_prompt, prompt, openai_api_key
|
| 20 |
+
from defaults import DEFAULT_CHUNK_SIZE, DEFAULT_CHUNK_OVERLAP, DEFAULT_RETRIEVER_K
|
| 21 |
+
from qagen import get_rag_qa_gen_chain
|
| 22 |
+
from summarize import get_rag_summarization_chain
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def get_runnable(
|
| 26 |
+
use_document_chat: bool,
|
| 27 |
+
document_chat_chain_type: str,
|
| 28 |
+
llm,
|
| 29 |
+
retriever,
|
| 30 |
+
memory,
|
| 31 |
+
):
|
| 32 |
+
if not use_document_chat:
|
| 33 |
+
return LLMChain(
|
| 34 |
+
prompt=chat_prompt,
|
| 35 |
+
llm=llm,
|
| 36 |
+
memory=memory,
|
| 37 |
+
) | (lambda output: output["text"])
|
| 38 |
+
|
| 39 |
+
if document_chat_chain_type == "Q&A Generation":
|
| 40 |
+
return get_rag_qa_gen_chain(
|
| 41 |
+
retriever,
|
| 42 |
+
llm,
|
| 43 |
+
)
|
| 44 |
+
elif document_chat_chain_type == "Summarization":
|
| 45 |
+
return get_rag_summarization_chain(
|
| 46 |
+
prompt,
|
| 47 |
+
retriever,
|
| 48 |
+
llm,
|
| 49 |
+
)
|
| 50 |
+
else:
|
| 51 |
+
return RetrievalQA.from_chain_type(
|
| 52 |
+
llm=llm,
|
| 53 |
+
chain_type=document_chat_chain_type,
|
| 54 |
+
retriever=retriever,
|
| 55 |
+
memory=memory,
|
| 56 |
+
output_key="output_text",
|
| 57 |
+
) | (lambda output: output["output_text"])
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_llm(
|
| 61 |
+
provider: str,
|
| 62 |
+
model: str,
|
| 63 |
+
provider_api_key: str,
|
| 64 |
+
temperature: float,
|
| 65 |
+
max_tokens: int,
|
| 66 |
+
azure_available: bool,
|
| 67 |
+
azure_dict: dict[str, str],
|
| 68 |
+
):
|
| 69 |
+
if azure_available and provider == "Azure OpenAI":
|
| 70 |
+
return AzureChatOpenAI(
|
| 71 |
+
openai_api_base=azure_dict["AZURE_OPENAI_BASE_URL"],
|
| 72 |
+
openai_api_version=azure_dict["AZURE_OPENAI_API_VERSION"],
|
| 73 |
+
deployment_name=azure_dict["AZURE_OPENAI_DEPLOYMENT_NAME"],
|
| 74 |
+
openai_api_key=azure_dict["AZURE_OPENAI_API_KEY"],
|
| 75 |
+
openai_api_type="azure",
|
| 76 |
+
model_version=azure_dict["AZURE_OPENAI_MODEL_VERSION"],
|
| 77 |
+
temperature=temperature,
|
| 78 |
+
streaming=True,
|
| 79 |
+
max_tokens=max_tokens,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
elif provider_api_key:
|
| 83 |
+
if provider == "OpenAI":
|
| 84 |
+
return ChatOpenAI(
|
| 85 |
+
model_name=model,
|
| 86 |
+
openai_api_key=provider_api_key,
|
| 87 |
+
temperature=temperature,
|
| 88 |
+
streaming=True,
|
| 89 |
+
max_tokens=max_tokens,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
elif provider == "Anthropic":
|
| 93 |
+
return ChatAnthropic(
|
| 94 |
+
model=model,
|
| 95 |
+
anthropic_api_key=provider_api_key,
|
| 96 |
+
temperature=temperature,
|
| 97 |
+
streaming=True,
|
| 98 |
+
max_tokens_to_sample=max_tokens,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
elif provider == "Anyscale Endpoints":
|
| 102 |
+
return ChatAnyscale(
|
| 103 |
+
model_name=model,
|
| 104 |
+
anyscale_api_key=provider_api_key,
|
| 105 |
+
temperature=temperature,
|
| 106 |
+
streaming=True,
|
| 107 |
+
max_tokens=max_tokens,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
return None
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def get_texts_and_retriever(
|
| 114 |
+
uploaded_file_bytes: bytes,
|
| 115 |
+
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
| 116 |
+
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
| 117 |
+
k: int = DEFAULT_RETRIEVER_K,
|
| 118 |
+
) -> Tuple[List[Document], BaseRetriever]:
|
| 119 |
+
with NamedTemporaryFile() as temp_file:
|
| 120 |
+
temp_file.write(uploaded_file_bytes)
|
| 121 |
+
temp_file.seek(0)
|
| 122 |
+
|
| 123 |
+
loader = PyPDFLoader(temp_file.name)
|
| 124 |
+
documents = loader.load()
|
| 125 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 126 |
+
chunk_size=chunk_size,
|
| 127 |
+
chunk_overlap=chunk_overlap,
|
| 128 |
+
)
|
| 129 |
+
texts = text_splitter.split_documents(documents)
|
| 130 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
| 131 |
+
|
| 132 |
+
bm25_retriever = BM25Retriever.from_documents(texts)
|
| 133 |
+
bm25_retriever.k = k
|
| 134 |
+
|
| 135 |
+
faiss_vectorstore = FAISS.from_documents(texts, embeddings)
|
| 136 |
+
faiss_retriever = faiss_vectorstore.as_retriever(search_kwargs={"k": k})
|
| 137 |
+
|
| 138 |
+
ensemble_retriever = EnsembleRetriever(
|
| 139 |
+
retrievers=[bm25_retriever, faiss_retriever],
|
| 140 |
+
weights=[0.5, 0.5],
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
return texts, ensemble_retriever
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class StreamHandler(BaseCallbackHandler):
|
| 147 |
+
def __init__(self, container, initial_text=""):
|
| 148 |
+
self.container = container
|
| 149 |
+
self.text = initial_text
|
| 150 |
+
|
| 151 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
| 152 |
+
self.text += token
|
| 153 |
+
self.container.markdown(self.text)
|