Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,41 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
from peft import PeftModel
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# --- 1. CONFIGURATION ---
|
| 8 |
-
MODEL_METRICS = {
|
| 9 |
-
"Accuracy": "89.20%",
|
| 10 |
-
"F1_Score": "0.8931"
|
| 11 |
-
}
|
| 12 |
-
|
| 13 |
ADAPTER_REPO = "jvillar-sheff/ag-news-distilbert-lora"
|
| 14 |
BASE_MODEL_ID = "distilbert-base-uncased"
|
| 15 |
CLASS_NAMES = {0: "World", 1: "Sports", 2: "Business", 3: "Sci/Tech"}
|
| 16 |
|
| 17 |
-
# --- 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def load_model():
|
| 19 |
print("Loading Base Model...")
|
| 20 |
base_model = AutoModelForSequenceClassification.from_pretrained(
|
|
@@ -30,6 +51,7 @@ def load_model():
|
|
| 30 |
print("Loading Adapters...")
|
| 31 |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
| 32 |
|
|
|
|
| 33 |
device = torch.device("cpu")
|
| 34 |
model.to(device)
|
| 35 |
model.eval()
|
|
@@ -37,7 +59,7 @@ def load_model():
|
|
| 37 |
|
| 38 |
model, tokenizer, device = load_model()
|
| 39 |
|
| 40 |
-
# ---
|
| 41 |
def predict(text):
|
| 42 |
if not text.strip():
|
| 43 |
return None, None, None
|
|
@@ -60,35 +82,36 @@ def predict(text):
|
|
| 60 |
# 2. Create Probability Dict for the Chart
|
| 61 |
class_probs = {CLASS_NAMES[i]: float(probs[i]) for i in range(len(CLASS_NAMES))}
|
| 62 |
|
| 63 |
-
# 3. Create HTML for the "Confidence Badge"
|
| 64 |
if conf > 0.85:
|
| 65 |
-
bg_color, txt_color = "#d4edda", "#155724" # Green
|
| 66 |
elif conf > 0.60:
|
| 67 |
-
bg_color, txt_color = "#fff3cd", "#856404" # Yellow
|
| 68 |
else:
|
| 69 |
-
bg_color, txt_color = "#f8d7da", "#721c24" # Red
|
| 70 |
|
| 71 |
badge_html = f"""
|
| 72 |
<div style='background-color: {bg_color}; color: {txt_color};
|
| 73 |
-
padding: 8px
|
| 74 |
-
Confidence: {conf:.2%}
|
| 75 |
</div>
|
| 76 |
"""
|
| 77 |
|
| 78 |
# Return: Label Text, Badge HTML, Chart Data
|
| 79 |
return f"# {pred_label}", badge_html, class_probs
|
| 80 |
|
| 81 |
-
# ---
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
# Title
|
| 85 |
gr.Markdown("# π° NLP News Classifier")
|
| 86 |
gr.Markdown("Classify news articles into World, Sports, Business, or Sci/Tech using DistilBERT + LoRA.")
|
| 87 |
|
| 88 |
# -- The "Green Banner" (HTML) --
|
| 89 |
gr.HTML(f"""
|
| 90 |
<div style="background-color: #d1e7dd; color: #0f5132; padding: 15px; border-radius: 5px; border: 1px solid #badbcc; margin-bottom: 20px;">
|
| 91 |
-
β
<b>Model Performance:</b> Accuracy: {MODEL_METRICS['Accuracy']} | F1 Score: {MODEL_METRICS['F1_Score']}
|
| 92 |
</div>
|
| 93 |
""")
|
| 94 |
|
|
@@ -121,7 +144,7 @@ with gr.Blocks() as demo:
|
|
| 121 |
out_badge = gr.HTML()
|
| 122 |
|
| 123 |
gr.Markdown("### Probability Breakdown")
|
| 124 |
-
# Output 3: Bar Chart
|
| 125 |
out_chart = gr.Label(num_top_classes=4, label="Confidence Scores")
|
| 126 |
|
| 127 |
# Wire up the button
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
+
import json
|
| 5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
from peft import PeftModel
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
# --- 1. CONFIGURATION ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
ADAPTER_REPO = "jvillar-sheff/ag-news-distilbert-lora"
|
| 12 |
BASE_MODEL_ID = "distilbert-base-uncased"
|
| 13 |
CLASS_NAMES = {0: "World", 1: "Sports", 2: "Business", 3: "Sci/Tech"}
|
| 14 |
|
| 15 |
+
# --- 2. DYNAMIC METRICS LOADING ---
|
| 16 |
+
def fetch_metrics():
|
| 17 |
+
"""Downloads evaluation_report.json from the Model Hub."""
|
| 18 |
+
try:
|
| 19 |
+
file_path = hf_hub_download(repo_id=ADAPTER_REPO, filename="evaluation_report.json")
|
| 20 |
+
with open(file_path, "r") as f:
|
| 21 |
+
data = json.load(f)
|
| 22 |
+
|
| 23 |
+
# Extract numbers
|
| 24 |
+
acc = data['overall_metrics']['Accuracy']
|
| 25 |
+
f1 = data['overall_metrics']['F1 Macro']
|
| 26 |
+
|
| 27 |
+
return {
|
| 28 |
+
"Accuracy": f"{acc:.2%}",
|
| 29 |
+
"F1_Score": f"{f1:.4f}"
|
| 30 |
+
}
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Error loading metrics: {e}")
|
| 33 |
+
return {"Accuracy": "N/A", "F1_Score": "N/A"}
|
| 34 |
+
|
| 35 |
+
# Load metrics on app startup
|
| 36 |
+
MODEL_METRICS = fetch_metrics()
|
| 37 |
+
|
| 38 |
+
# --- 3. MODEL LOADING ---
|
| 39 |
def load_model():
|
| 40 |
print("Loading Base Model...")
|
| 41 |
base_model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
| 51 |
print("Loading Adapters...")
|
| 52 |
model = PeftModel.from_pretrained(base_model, ADAPTER_REPO)
|
| 53 |
|
| 54 |
+
# Force CPU for Free Tier Spaces
|
| 55 |
device = torch.device("cpu")
|
| 56 |
model.to(device)
|
| 57 |
model.eval()
|
|
|
|
| 59 |
|
| 60 |
model, tokenizer, device = load_model()
|
| 61 |
|
| 62 |
+
# --- 4. PREDICTION LOGIC ---
|
| 63 |
def predict(text):
|
| 64 |
if not text.strip():
|
| 65 |
return None, None, None
|
|
|
|
| 82 |
# 2. Create Probability Dict for the Chart
|
| 83 |
class_probs = {CLASS_NAMES[i]: float(probs[i]) for i in range(len(CLASS_NAMES))}
|
| 84 |
|
| 85 |
+
# 3. Create HTML for the "Confidence Badge"
|
| 86 |
if conf > 0.85:
|
| 87 |
+
bg_color, txt_color, icon = "#d4edda", "#155724", "β" # Green
|
| 88 |
elif conf > 0.60:
|
| 89 |
+
bg_color, txt_color, icon = "#fff3cd", "#856404", "~" # Yellow
|
| 90 |
else:
|
| 91 |
+
bg_color, txt_color, icon = "#f8d7da", "#721c24", "β" # Red
|
| 92 |
|
| 93 |
badge_html = f"""
|
| 94 |
<div style='background-color: {bg_color}; color: {txt_color};
|
| 95 |
+
padding: 8px 16px; border-radius: 5px; display: inline-block; font-weight: bold; font-size: 16px;'>
|
| 96 |
+
{icon} Confidence: {conf:.2%}
|
| 97 |
</div>
|
| 98 |
"""
|
| 99 |
|
| 100 |
# Return: Label Text, Badge HTML, Chart Data
|
| 101 |
return f"# {pred_label}", badge_html, class_probs
|
| 102 |
|
| 103 |
+
# --- 5. UI LAYOUT (gr.Blocks) ---
|
| 104 |
+
# Using Soft theme (requires newer Gradio version in requirements.txt)
|
| 105 |
+
# If it fails, remove theme=gr.themes.Soft()
|
| 106 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 107 |
|
|
|
|
| 108 |
gr.Markdown("# π° NLP News Classifier")
|
| 109 |
gr.Markdown("Classify news articles into World, Sports, Business, or Sci/Tech using DistilBERT + LoRA.")
|
| 110 |
|
| 111 |
# -- The "Green Banner" (HTML) --
|
| 112 |
gr.HTML(f"""
|
| 113 |
<div style="background-color: #d1e7dd; color: #0f5132; padding: 15px; border-radius: 5px; border: 1px solid #badbcc; margin-bottom: 20px;">
|
| 114 |
+
β
<b>Model Performance (Test Set):</b> Accuracy: {MODEL_METRICS['Accuracy']} | F1 Score: {MODEL_METRICS['F1_Score']}
|
| 115 |
</div>
|
| 116 |
""")
|
| 117 |
|
|
|
|
| 144 |
out_badge = gr.HTML()
|
| 145 |
|
| 146 |
gr.Markdown("### Probability Breakdown")
|
| 147 |
+
# Output 3: Bar Chart
|
| 148 |
out_chart = gr.Label(num_top_classes=4, label="Confidence Scores")
|
| 149 |
|
| 150 |
# Wire up the button
|