Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -237,6 +237,30 @@ def format_emotions(emotion_counts):
|
|
| 237 |
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=3):
|
| 238 |
summaries = []
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
# Create a placeholder for the progress bar
|
| 241 |
progress_placeholder = st.empty()
|
| 242 |
progress_bar = progress_placeholder.progress(0)
|
|
@@ -286,8 +310,30 @@ def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, to
|
|
| 286 |
except Exception as e:
|
| 287 |
st.warning(f"Error classifying emotion for poem {i+1} in {country}: {str(e)}")
|
| 288 |
continue
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
# Clear progress for next country
|
| 293 |
progress_placeholder.empty()
|
|
|
|
| 237 |
def process_and_summarize(df, bert_tokenizer, bert_model, emotion_classifier, top_n=50, topic_strategy="Auto", n_topics=None, min_topic_size=3):
|
| 238 |
summaries = []
|
| 239 |
|
| 240 |
+
topic_model_params = {
|
| 241 |
+
"language": "arabic",
|
| 242 |
+
"calculate_probabilities": True,
|
| 243 |
+
"min_topic_size": min_topic_size,
|
| 244 |
+
"n_gram_range": (1, 1),
|
| 245 |
+
"top_n_words": 15,
|
| 246 |
+
"verbose": True,
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
if topic_strategy == "Manual":
|
| 250 |
+
topic_model_params["nr_topics"] = n_topics
|
| 251 |
+
else:
|
| 252 |
+
topic_model_params["nr_topics"] = "auto"
|
| 253 |
+
|
| 254 |
+
topic_model = BERTopic(
|
| 255 |
+
embedding_model=bert_model,
|
| 256 |
+
**topic_model_params
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
vectorizer = CountVectorizer(stop_words=list(ARABIC_STOP_WORDS),
|
| 260 |
+
min_df=1,
|
| 261 |
+
max_df=1.0)
|
| 262 |
+
topic_model.vectorizer_model = vectorizer
|
| 263 |
+
|
| 264 |
# Create a placeholder for the progress bar
|
| 265 |
progress_placeholder = st.empty()
|
| 266 |
progress_bar = progress_placeholder.progress(0)
|
|
|
|
| 310 |
except Exception as e:
|
| 311 |
st.warning(f"Error classifying emotion for poem {i+1} in {country}: {str(e)}")
|
| 312 |
continue
|
| 313 |
+
|
| 314 |
+
try:
|
| 315 |
+
if len(texts) < min_topic_size:
|
| 316 |
+
st.warning(f"Not enough documents for {country} to generate meaningful topics (minimum {min_topic_size} required)")
|
| 317 |
+
continue
|
| 318 |
+
|
| 319 |
+
topics, probs = topic_model.fit_transform(texts, embeddings)
|
| 320 |
+
|
| 321 |
+
topic_counts = Counter(topics)
|
| 322 |
+
|
| 323 |
+
top_topics = format_topics(topic_model, topic_counts.most_common(top_n))
|
| 324 |
+
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
|
| 325 |
+
|
| 326 |
+
summaries.append({
|
| 327 |
+
'country': country,
|
| 328 |
+
'total_poems': len(texts),
|
| 329 |
+
'top_topics': top_topics,
|
| 330 |
+
'top_emotions': top_emotions
|
| 331 |
+
})
|
| 332 |
+
progress_bar.progress(1.0, text="Processing complete!")
|
| 333 |
+
|
| 334 |
+
except Exception as e:
|
| 335 |
+
st.warning(f"Could not generate topics for {country}: {str(e)}")
|
| 336 |
+
continue
|
| 337 |
|
| 338 |
# Clear progress for next country
|
| 339 |
progress_placeholder.empty()
|