Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """This file contains functions to build encoder and decoder.""" | |
| import tensorflow as tf | |
| from deeplab2 import config_pb2 | |
| from deeplab2.model.decoder import deeplabv3 | |
| from deeplab2.model.decoder import deeplabv3plus | |
| from deeplab2.model.decoder import max_deeplab | |
| from deeplab2.model.decoder import motion_deeplab_decoder | |
| from deeplab2.model.decoder import panoptic_deeplab | |
| from deeplab2.model.decoder import vip_deeplab_decoder | |
| from deeplab2.model.encoder import axial_resnet_instances | |
| from deeplab2.model.encoder import mobilenet | |
| def create_encoder(backbone_options: config_pb2.ModelOptions.BackboneOptions, | |
| bn_layer: tf.keras.layers.Layer, | |
| conv_kernel_weight_decay: float = 0.0) -> tf.keras.Model: | |
| """Creates an encoder. | |
| Args: | |
| backbone_options: A proto config of type | |
| config_pb2.ModelOptions.BackboneOptions. | |
| bn_layer: A tf.keras.layers.Layer that computes the normalization. | |
| conv_kernel_weight_decay: A float, the weight decay for convolution kernels. | |
| Returns: | |
| An instance of tf.keras.Model containing the encoder. | |
| Raises: | |
| ValueError: An error occurs when the specified encoder meta architecture is | |
| not supported. | |
| """ | |
| if ('resnet' in backbone_options.name or | |
| 'swidernet' in backbone_options.name or | |
| 'axial_deeplab' in backbone_options.name or | |
| 'max_deeplab' in backbone_options.name): | |
| return create_resnet_encoder( | |
| backbone_options, | |
| bn_layer=bn_layer, | |
| conv_kernel_weight_decay=conv_kernel_weight_decay) | |
| elif 'mobilenet' in backbone_options.name: | |
| return create_mobilenet_encoder( | |
| backbone_options, | |
| bn_layer=bn_layer, | |
| conv_kernel_weight_decay=conv_kernel_weight_decay) | |
| raise ValueError('The specified encoder %s is not a valid encoder.' % | |
| backbone_options.name) | |
| def create_mobilenet_encoder( | |
| backbone_options: config_pb2.ModelOptions.BackboneOptions, | |
| bn_layer: tf.keras.layers.Layer, | |
| conv_kernel_weight_decay: float = 0.0) -> tf.keras.Model: | |
| """Creates a MobileNet encoder specified by name. | |
| Args: | |
| backbone_options: A proto config of type | |
| config_pb2.ModelOptions.BackboneOptions. | |
| bn_layer: A tf.keras.layers.Layer that computes the normalization. | |
| conv_kernel_weight_decay: A float, the weight decay for convolution kernels. | |
| Returns: | |
| An instance of tf.keras.Model containing the MobileNet encoder. | |
| """ | |
| if backbone_options.name.lower() == 'mobilenet_v3_large': | |
| backbone = mobilenet.MobileNetV3Large | |
| elif backbone_options.name.lower() == 'mobilenet_v3_small': | |
| backbone = mobilenet.MobileNetV3Small | |
| else: | |
| raise ValueError('The specified encoder %s is not a valid encoder.' % | |
| backbone_options.name) | |
| assert backbone_options.use_squeeze_and_excite | |
| assert backbone_options.drop_path_keep_prob == 1 | |
| assert backbone_options.use_sac_beyond_stride == -1 | |
| assert backbone_options.backbone_layer_multiplier == 1 | |
| return backbone( | |
| output_stride=backbone_options.output_stride, | |
| width_multiplier=backbone_options.backbone_width_multiplier, | |
| bn_layer=bn_layer, | |
| conv_kernel_weight_decay=conv_kernel_weight_decay) | |
| def create_resnet_encoder( | |
| backbone_options: config_pb2.ModelOptions.BackboneOptions, | |
| bn_layer: tf.keras.layers.Layer, | |
| conv_kernel_weight_decay: float = 0.0) -> tf.keras.Model: | |
| """Creates a ResNet encoder specified by name. | |
| Args: | |
| backbone_options: A proto config of type | |
| config_pb2.ModelOptions.BackboneOptions. | |
| bn_layer: A tf.keras.layers.Layer that computes the normalization. | |
| conv_kernel_weight_decay: A float, the weight decay for convolution kernels. | |
| Returns: | |
| An instance of tf.keras.Model containing the ResNet encoder. | |
| """ | |
| return axial_resnet_instances.get_model( | |
| backbone_options.name, | |
| output_stride=backbone_options.output_stride, | |
| stem_width_multiplier=backbone_options.stem_width_multiplier, | |
| width_multiplier=backbone_options.backbone_width_multiplier, | |
| backbone_layer_multiplier=backbone_options.backbone_layer_multiplier, | |
| block_group_config={ | |
| 'use_squeeze_and_excite': backbone_options.use_squeeze_and_excite, | |
| 'drop_path_keep_prob': backbone_options.drop_path_keep_prob, | |
| 'drop_path_schedule': backbone_options.drop_path_schedule, | |
| 'use_sac_beyond_stride': backbone_options.use_sac_beyond_stride}, | |
| bn_layer=bn_layer, | |
| conv_kernel_weight_decay=conv_kernel_weight_decay) | |
| def create_decoder(model_options: config_pb2.ModelOptions, | |
| bn_layer: tf.keras.layers.Layer, | |
| ignore_label: int) -> tf.keras.Model: | |
| """Creates a DeepLab decoder. | |
| Args: | |
| model_options: A proto config of type config_pb2.ModelOptions. | |
| bn_layer: A tf.keras.layers.Layer that computes the normalization. | |
| ignore_label: An integer specifying the ignore label. | |
| Returns: | |
| An instance of tf.keras.layers.Layer containing the decoder. | |
| Raises: | |
| ValueError: An error occurs when the specified meta architecture is not | |
| supported. | |
| """ | |
| meta_architecture = model_options.WhichOneof('meta_architecture') | |
| if meta_architecture == 'deeplab_v3': | |
| return deeplabv3.DeepLabV3( | |
| model_options.decoder, model_options.deeplab_v3, bn_layer=bn_layer) | |
| elif meta_architecture == 'deeplab_v3_plus': | |
| return deeplabv3plus.DeepLabV3Plus( | |
| model_options.decoder, model_options.deeplab_v3_plus, bn_layer=bn_layer) | |
| elif meta_architecture == 'panoptic_deeplab': | |
| return panoptic_deeplab.PanopticDeepLab( | |
| model_options.decoder, | |
| model_options.panoptic_deeplab, | |
| bn_layer=bn_layer) | |
| elif meta_architecture == 'motion_deeplab': | |
| return motion_deeplab_decoder.MotionDeepLabDecoder( | |
| model_options.decoder, | |
| model_options.motion_deeplab, | |
| bn_layer=bn_layer) | |
| elif meta_architecture == 'vip_deeplab': | |
| return vip_deeplab_decoder.ViPDeepLabDecoder( | |
| model_options.decoder, | |
| model_options.vip_deeplab, | |
| bn_layer=bn_layer) | |
| elif meta_architecture == 'max_deeplab': | |
| return max_deeplab.MaXDeepLab( | |
| model_options.decoder, | |
| model_options.max_deeplab, | |
| ignore_label=ignore_label, | |
| bn_layer=bn_layer) | |
| raise ValueError('The specified meta architecture %s is not implemented.' % | |
| meta_architecture) | |