Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The Deeplab2 Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for runner_utils.py.""" | |
| import os | |
| import numpy as np | |
| import tensorflow as tf | |
| from google.protobuf import text_format | |
| from deeplab2 import config_pb2 | |
| from deeplab2.data import dataset | |
| from deeplab2.model import deeplab | |
| from deeplab2.trainer import runner_utils | |
| # resources dependency | |
| _CONFIG_PATH = 'deeplab2/configs/example' | |
| def _read_proto_file(filename, proto): | |
| filename = filename # OSS: removed internal filename loading. | |
| with tf.io.gfile.GFile(filename, 'r') as proto_file: | |
| return text_format.ParseLines(proto_file, proto) | |
| def _create_model_from_test_proto(file_name, | |
| dataset_name='coco_panoptic'): | |
| proto_filename = os.path.join(_CONFIG_PATH, file_name) | |
| config = _read_proto_file(proto_filename, config_pb2.ExperimentOptions()) | |
| return deeplab.DeepLab(config, | |
| dataset.MAP_NAME_TO_DATASET_INFO[dataset_name] | |
| ), config | |
| class RunnerUtilsTest(tf.test.TestCase): | |
| def test_check_if_variable_in_backbone_with_max_deeplab(self): | |
| model, experiment_options = _create_model_from_test_proto( | |
| 'example_coco_max_deeplab.textproto', dataset_name='coco_panoptic') | |
| train_crop_size = tuple( | |
| experiment_options.train_dataset_options.crop_size) | |
| input_tensor = tf.random.uniform( | |
| shape=(2, train_crop_size[0], train_crop_size[1], 3)) | |
| _ = model(input_tensor, training=True) | |
| encoder = model.checkpoint_items['encoder'] | |
| encoder_variable_names = [x.name for x in encoder.trainable_variables] | |
| encoder_name = experiment_options.model_options.backbone.name | |
| num_backbone_params = 0 | |
| backbone_optimizer_inputs = [] | |
| for variable in model.trainable_weights: | |
| if runner_utils.check_if_variable_in_backbone(variable, encoder_name, | |
| encoder_variable_names): | |
| backbone_optimizer_inputs.append(variable) | |
| num_backbone_params += np.prod(variable.get_shape().as_list()) | |
| # The number of Tensors in the backbone. We use this number in addition to | |
| # the number of parameters as a check of correctness. | |
| self.assertLen(backbone_optimizer_inputs, 301) | |
| # The same number of parameters as max_deeplab_s_backbone. | |
| self.assertEqual(num_backbone_params, 41343424) | |
| if __name__ == '__main__': | |
| tf.test.main() | |