Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,14 +18,74 @@ description = """
|
|
| 18 |
Please give it 3 to 4 minutes for the model to load and Run , consider using Python code with less than 120 lines of code due to GPU constrainst
|
| 19 |
"""
|
| 20 |
css = """.toast-wrap { display: none !important } """
|
| 21 |
-
examples=[
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Note: We have removed default system prompt as requested by the paper authors [Dated: 13/Oct/2023]
|
| 31 |
# Prompting style for Llama2 without using system prompt
|
|
|
|
| 18 |
Please give it 3 to 4 minutes for the model to load and Run , consider using Python code with less than 120 lines of code due to GPU constrainst
|
| 19 |
"""
|
| 20 |
css = """.toast-wrap { display: none !important } """
|
| 21 |
+
examples=[["""
|
| 22 |
+
import pandas as pd
|
| 23 |
+
import re
|
| 24 |
+
import ast
|
| 25 |
+
from code_bert_score import score
|
| 26 |
+
import numpy as np
|
| 27 |
+
def preprocess_code(source_text):
|
| 28 |
+
|
| 29 |
+
def remove_comments_and_docstrings(source_code):
|
| 30 |
+
source_code = re.sub(r'#.*', '', source_code)
|
| 31 |
+
source_code = re.sub(r'(\'\'\'(.*?)\'\'\'|\"\"\"(.*?)\"\"\")', '', source_code, flags=re.DOTALL)
|
| 32 |
+
return source_code
|
| 33 |
+
pattern = r"```python\s+(.+?)\s+```"
|
| 34 |
+
matches = re.findall(pattern, source_text, re.DOTALL)
|
| 35 |
+
code_to_process = '\n'.join(matches) if matches else source_text
|
| 36 |
+
cleaned_code = remove_comments_and_docstrings(code_to_process)
|
| 37 |
+
return cleaned_code
|
| 38 |
+
def evaluate_dataframe(df):
|
| 39 |
+
|
| 40 |
+
results = {'P': [], 'R': [], 'F1': [], 'F3': []}
|
| 41 |
+
for index, row in df.iterrows():
|
| 42 |
+
try:
|
| 43 |
+
cands = [preprocess_code(row['generated_text'])]
|
| 44 |
+
refs = [preprocess_code(row['output'])]
|
| 45 |
+
P, R, F1, F3 = score(cands, refs, lang='python')
|
| 46 |
+
results['P'].append(P[0])
|
| 47 |
+
results['R'].append(R[0])
|
| 48 |
+
results['F1'].append(F1[0])
|
| 49 |
+
results['F3'].append(F3[0])
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error processing row {index}: {e}")
|
| 52 |
+
for key in results.keys():
|
| 53 |
+
results[key].append(None)
|
| 54 |
+
df_metrics = pd.DataFrame(results)
|
| 55 |
+
return df_metrics
|
| 56 |
+
def evaluate_dataframe_multiple_runs(df, runs=3):
|
| 57 |
+
|
| 58 |
+
all_results = []
|
| 59 |
+
for run in range(runs):
|
| 60 |
+
df_metrics = evaluate_dataframe(df)
|
| 61 |
+
all_results.append(df_metrics)
|
| 62 |
+
# Calculate mean and std deviation of metrics across runs
|
| 63 |
+
df_metrics_mean = pd.concat(all_results).groupby(level=0).mean()
|
| 64 |
+
df_metrics_std = pd.concat(all_results).groupby(level=0).std()
|
| 65 |
+
return df_metrics_mean, df_metrics_std
|
| 66 |
+
""" ] ,
|
| 67 |
+
["""
|
| 68 |
+
def analyze_sales_data(sales_records):
|
| 69 |
+
active_sales = filter(lambda record: record['status'] == 'active', sales_records)
|
| 70 |
+
sales_by_category = {}
|
| 71 |
+
for record in active_sales:
|
| 72 |
+
category = record['category']
|
| 73 |
+
total_sales = record['units_sold'] * record['price_per_unit']
|
| 74 |
+
if category not in sales_by_category:
|
| 75 |
+
sales_by_category[category] = {'total_sales': 0, 'total_units': 0}
|
| 76 |
+
sales_by_category[category]['total_sales'] += total_sales
|
| 77 |
+
sales_by_category[category]['total_units'] += record['units_sold']
|
| 78 |
+
average_sales_data = []
|
| 79 |
+
for category, data in sales_by_category.items():
|
| 80 |
+
average_sales = data['total_sales'] / data['total_units']
|
| 81 |
+
sales_by_category[category]['average_sales'] = average_sales
|
| 82 |
+
average_sales_data.append((category, average_sales))
|
| 83 |
+
average_sales_data.sort(key=lambda x: x[1], reverse=True)
|
| 84 |
+
for rank, (category, _) in enumerate(average_sales_data, start=1):
|
| 85 |
+
sales_by_category[category]['rank'] = rank
|
| 86 |
+
return sales_by_category
|
| 87 |
+
"""]
|
| 88 |
+
]
|
| 89 |
|
| 90 |
# Note: We have removed default system prompt as requested by the paper authors [Dated: 13/Oct/2023]
|
| 91 |
# Prompting style for Llama2 without using system prompt
|