Spaces:
Runtime error
Runtime error
File size: 29,729 Bytes
b3a699a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
# Copy of final
# ================================================================
# = STEP 1: SETUP AND DOWNLOAD (YOUR PROVEN METHOD) =
# ================================================================
import os
print("--- 1. Installing All Libraries ---")
print("✅ Libraries installed.")
print("\n--- 2. Cloning IndicLID Repository ---")
# Using your proven method of changing directories
print("✅ Repository cloned.")
# Navigate into the correct directory structure
print("\n--- 3. Downloading and Unzipping IndicLID Models ---")
print("✅ Download commands executed. Unzipping now...")
print("✅ Unzip commands executed.")
print("\n🎉🎉🎉 SETUP COMPLETE. You can now proceed to Step 2. 🎉🎉🎉")
# =========================
# = STEP 2: INITIALIZE MODELS (EXACTLY AS YOUR OLD CODE) =
# =========================
import os
import sys
import torch
print("--- Applying your original add_safe_globals fix... ---")
if "/content/IndicLID/Inference" not in sys.path:
sys.path.append("/content/IndicLID/Inference")
from transformers.models.bert.modeling_bert import (
BertModel, BertPreTrainedModel, BertForSequenceClassification,
BertEmbeddings, BertEncoder, BertPooler, BertLayer, BertAttention,
BertSelfAttention, BertSelfOutput, BertIntermediate, BertOutput
)
from transformers.models.bert.configuration_bert import BertConfig
import torch.nn as nn
from torch.nn.modules.sparse import Embedding
from torch.nn.modules.container import ModuleList
from torch.nn.modules.linear import Linear
from torch.nn.modules.normalization import LayerNorm
from torch.nn.modules.dropout import Dropout
torch.serialization.add_safe_globals([
BertModel, BertPreTrainedModel, BertForSequenceClassification,
BertEmbeddings, BertEncoder, BertPooler, BertLayer, BertAttention,
BertSelfAttention, BertSelfOutput, BertIntermediate, BertOutput, BertConfig,
Embedding, ModuleList, Linear, LayerNorm, Dropout,
])
print("✅ Comprehensive safe globals added successfully.")
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from IndicTransToolkit.processor import IndicProcessor
from ai4bharat.IndicLID import IndicLID
print("--- Loading all models into memory... ---")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
lid = IndicLID(input_threshold=0.5, roman_lid_threshold=0.6)
print("✅ IndicLID model loaded successfully.")
MODEL_ID = "ai4bharat/indictrans2-indic-en-1B"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID, trust_remote_code=True).to(device)
ip = IndicProcessor(inference=True)
print("✅ IndicTrans2 1B model loaded.")
print("🎉 ALL MODELS ARE LOADED. Proceed to direct batch prediction tests.")
import sys
print(sys.path)
pip show transformers
# ================================================================
# = STEP 2.5: LOAD ROMANSETU (COMPATIBLE WITH 4.40.2) =
# ================================================================
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
print("--- Loading RomanSetu model compatible with transformers 4.40.2... ---")
# Try smaller, more compatible models first
model_options = [
"ai4bharat/romansetu-cpt-roman-100m",
"ai4bharat/romansetu-cpt-roman-200m"
]
rs_model = None
rs_tokenizer = None
for model_id in model_options:
try:
print(f"Trying model: {model_id}")
rs_tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
rs_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
print(f"✅ {model_id} loaded successfully.")
break
except Exception as e:
print(f"❌ {model_id} failed: {e}")
continue
if rs_model is None:
print("❌ All RomanSetu models failed. Continuing with transliteration-based approach.")
def translate_with_romansetu(text, max_new_tokens=50):
if rs_model is None:
# Fallback: use enhanced transliteration + IndicTrans2
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
try:
# Try to transliterate and then translate with IndicTrans2
native_text = transliterate(text, sanscript.ITRANS, sanscript.DEVANAGARI)
pre = ip.preprocess_batch([native_text], src_lang="hin_Deva", tgt_lang="eng_Latn")
inputs = tokenizer(pre, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
out = model.generate(**inputs, num_beams=3, max_length=100)
dec = tokenizer.batch_decode(out, skip_special_tokens=True)
post = ip.postprocess_batch(dec, lang="hin_Deva")
return post[0]
except:
return text
try:
prompt = f"Translate this romanized Indian text to English: {text}"
inputs = rs_tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = rs_model.generate(
inputs.input_ids,
max_new_tokens=max_new_tokens,
num_beams=2,
temperature=0.7,
do_sample=True,
pad_token_id=rs_tokenizer.eos_token_id
)
full_response = rs_tokenizer.decode(outputs, skip_special_tokens=True)
translation = full_response.replace(prompt, "").strip()
return translation if translation and len(translation) > 2 else text
except Exception as e:
return text
print("✅ RomanSetu/fallback translation function defined.")
print("🎉 SETUP COMPLETE with fallback mechanism.")
# ================================================================
# = STEP 2.6: LOAD INDICXLIT FOR BETTER TRANSLITERATION (CORRECTED) =
# ================================================================
print("--- Installing and loading IndicXlit for better romanized text handling ---")
# Install IndicXlit (compatible with your transformers==4.40.2)
from ai4bharat.transliteration import XlitEngine
import torch
try:
# Load IndicXlit engines for different languages (based on official docs)
xlit_engines = {
"hindi": XlitEngine("hi", beam_width=4, rescore=True),
"bengali": XlitEngine("bn", beam_width=4, rescore=True),
"tamil": XlitEngine("ta", beam_width=4, rescore=True),
"telugu": XlitEngine("te", beam_width=4, rescore=True),
"gujarati": XlitEngine("gu", beam_width=4, rescore=True),
"kannada": XlitEngine("kn", beam_width=4, rescore=True),
"malayalam": XlitEngine("ml", beam_width=4, rescore=True),
"punjabi": XlitEngine("pa", beam_width=4, rescore=True),
"marathi": XlitEngine("mr", beam_width=4, rescore=True),
"urdu": XlitEngine("ur", beam_width=4, rescore=True),
}
print("✅ Multiple IndicXlit engines loaded successfully.")
except Exception as e:
print(f"❌ Error loading IndicXlit: {e}")
print("💡 Falling back to basic transliteration.")
xlit_engines = {}
def enhanced_transliterate_with_xlit(text, target_lang):
"""
Enhanced transliteration using IndicXlit (based on official API)
"""
lang_key = target_lang.lower()
if not xlit_engines or lang_key not in xlit_engines:
# Fallback to your existing transliteration
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
script_map = {
"hindi": sanscript.DEVANAGARI, "bengali": sanscript.BENGALI,
"tamil": sanscript.TAMIL, "telugu": sanscript.TELUGU,
"kannada": sanscript.KANNADA, "malayalam": sanscript.MALAYALAM,
"gujarati": sanscript.GUJARATI, "punjabi": sanscript.GURMUKHI,
"marathi": sanscript.DEVANAGARI, "urdu": 'urdu'
}
return transliterate(text, sanscript.ITRANS, script_map.get(lang_key, sanscript.DEVANAGARI))
try:
# Use IndicXlit for better transliteration (official API)
engine = xlit_engines[lang_key]
# For sentences, use translit_sentence (returns dict with lang code as key)
if ' ' in text:
result = engine.translit_sentence(text)
# Get the language code for this engine
lang_codes = {"hindi": "hi", "bengali": "bn", "tamil": "ta", "telugu": "te",
"gujarati": "gu", "kannada": "kn", "malayalam": "ml",
"punjabi": "pa", "marathi": "mr", "urdu": "ur"}
lang_code = lang_codes.get(lang_key, "hi")
return result.get(lang_code, text)
else:
# For single words, use translit_word (returns dict with topk results)
result = engine.translit_word(text, topk=1)
lang_codes = {"hindi": "hi", "bengali": "bn", "tamil": "ta", "telugu": "te",
"gujarati": "gu", "kannada": "kn", "malayalam": "ml",
"punjabi": "pa", "marathi": "mr", "urdu": "ur"}
lang_code = lang_codes.get(lang_key, "hi")
return result.get(lang_code, [text])[0]
except Exception as e:
print(f"IndicXlit error for '{text}': {e}")
# Fallback if IndicXlit fails
return text
print("✅ Enhanced transliteration function defined.")
print("🎉 INDICXLIT SETUP COMPLETE.")
import pandas as pd
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
# EXPANDED language mapping to handle misdetections
LID_TO_TRANSLATE = {
# Hindi variants
"hin_Deva": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
"hin_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
# Maithili (often confused with Hindi) - map to Hindi
"mai_Deva": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
"mai_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
# Bengali variants
"ben_Beng": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
"ben_Latn": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
# Assamese (often confused with Bengali) - map to Bengali
"asm_Beng": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
"asm_Latn": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
# Tamil variants
"tam_Tamil": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
"tam_Taml": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
"tam_Latn": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
# Telugu variants
"tel_Telu": {"name": "Telugu", "script": sanscript.TELUGU, "it_code": "tel_Telu"},
"tel_Latn": {"name": "Telugu", "script": sanscript.TELUGU, "it_code": "tel_Telu"},
# Kannada variants
"kan_Knda": {"name": "Kannada", "script": sanscript.KANNADA, "it_code": "kan_Knda"},
"kan_Latn": {"name": "Kannada", "script": sanscript.KANNADA, "it_code": "kan_Knda"},
# Malayalam variants
"mal_Mlym": {"name": "Malayalam", "script": sanscript.MALAYALAM, "it_code": "mal_Mlym"},
"mal_Latn": {"name": "Malayalam", "script": sanscript.MALAYALAM, "it_code": "mal_Mlym"},
# Gujarati variants
"guj_Gujr": {"name": "Gujarati", "script": sanscript.GUJARATI, "it_code": "guj_Gujr"},
"guj_Latn": {"name": "Gujarati", "script": sanscript.GUJARATI, "it_code": "guj_Gujr"},
# Punjabi variants
"pan_Guru": {"name": "Punjabi", "script": sanscript.GURMUKHI, "it_code": "pan_Guru"},
"pan_Latn": {"name": "Punjabi", "script": sanscript.GURMUKHI, "it_code": "pan_Guru"},
# Marathi variants
"mar_Deva": {"name": "Marathi", "script": sanscript.DEVANAGARI, "it_code": "mar_Deva"},
"mar_Latn": {"name": "Marathi", "script": sanscript.DEVANAGARI, "it_code": "mar_Deva"},
# Urdu variants
"urd_Arab": {"name": "Urdu", "script": 'urdu', "it_code": "urd_Arab"},
"urd_Latn": {"name": "Urdu", "script": 'urdu', "it_code": "urd_Arab"},
# Additional commonly misdetected languages
"snd_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Sindhi → Hindi
"nep_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Nepali → Hindi
"kok_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Konkani → Hindi
"gom_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Goan Konkani → Hindi
"brx_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Bodo → Hindi
}
def enhanced_transliterate_robust(text, target_script):
"""
Enhanced transliteration with better romanization handling
"""
try:
# Preprocess text for better transliteration
cleaned_text = text.lower().strip()
# Handle common romanization patterns
replacements = {
'kh': 'kh', 'ch': 'ch', 'th': 'th', 'ph': 'ph',
'bh': 'bh', 'dh': 'dh', 'gh': 'gh', 'jh': 'jh',
'aa': 'A', 'ee': 'I', 'oo': 'U', 'ou': 'au'
}
for old, new in replacements.items():
cleaned_text = cleaned_text.replace(old, new)
# Transliterate using your existing library
result = transliterate(cleaned_text, sanscript.ITRANS, target_script)
return result if result else text
except Exception as e:
print(f"Transliteration error: {e}")
return text
def detect_and_translate_robust(texts, batch_size=64):
"""
Robust detection and translation with expanded language mapping
"""
results = []
preds = lid.batch_predict(texts, batch_size)
for item in preds:
if isinstance(item, dict):
text = item.get("text", "")
lang_code = item.get("lang", item.get("pred_lang", ""))
score = float(item.get("score", 0.0))
model_name = item.get("model", "")
else:
text, lang_code, score, model_name = item
is_romanized = lang_code.endswith("_Latn")
if lang_code not in LID_TO_TRANSLATE:
translation = f"Language '{lang_code}' not supported for translation"
method = "Unsupported"
else:
try:
lang_info = LID_TO_TRANSLATE[lang_code]
src_code = lang_info["it_code"]
if is_romanized:
# Use enhanced transliteration
native_text = enhanced_transliterate_robust(text, lang_info["script"])
method = f"Enhanced Transliteration + IndicTrans2 (detected as {lang_code})"
print(f"Enhanced: '{text}' → '{native_text}' (detected: {lang_code})")
else:
native_text = text
method = f"IndicTrans2 (detected as {lang_code})"
# Translate with IndicTrans2
pre = ip.preprocess_batch([native_text], src_lang=src_code, tgt_lang="eng_Latn")
inputs = tokenizer(pre, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
out = model.generate(**inputs, num_beams=5, max_length=256, early_stopping=True)
dec = tokenizer.batch_decode(out, skip_special_tokens=True)
post = ip.postprocess_batch(dec, lang=src_code)
translation = post[0]
except Exception as e:
translation = f"Translation error: {str(e)}"
method = "Error"
results.append({
"original_text": text,
"detected_lang": lang_code,
"script_type": "Romanized" if is_romanized else "Native",
"confidence": f"{score:.3f}",
"translation_method": method,
"english_translation": translation
})
return pd.DataFrame(results)
print("✅ Robust translation function with expanded language mapping defined")
# Test with the same samples
sample_texts = [
"यहाँ कितने लोग हैं?",
"tum kaha ho",
"aaj mausam suhana hai",
"aap kaise hain",
"আমি ভালো আছি।",
"ami bhalo achi",
"mera naam rahul hai",
"main office jaa raha hun"
]
print(f"🔍 Testing robust approach with expanded language mapping...")
df_results = detect_and_translate_robust(sample_texts, batch_size=16)
display(df_results)
# ================================================================
# = COMPLETE TEST CODE FOR ALL 22 INDIAN LANGUAGES =
# ================================================================
import pandas as pd
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
# Official 22 Indian languages sample sentences (native + romanized)
sample_sentences = {
"Assamese": ("আপুনি কেনেকৈ আছেন?", "apuni kenekoi asen?"),
"Bengali": ("তুমি কেমন আছো?", "tumi kemon acho?"),
"Bodo": ("नांगनि फाथै खौ?", "nangni phathai kho?"),
"Dogri": ("तुसीं केहे हो?", "tusi kehe ho?"),
"Gujarati": ("તમે કેમ છો?", "tame kem cho?"),
"Hindi": ("तुम कैसे हो?", "tum kaise ho?"),
"Kannada": ("ನೀವು ಹೇಗಿದ್ದೀರಾ?", "neevu hegiddira?"),
"Kashmiri": ("तुस की छै?", "tus ki chhai?"),
"Konkani": ("तुम कशें आसा?", "tum kashen asa?"),
"Maithili": ("अहाँ कथी छी?", "ahaan kathi chhi?"),
"Malayalam": ("സുഖമായിരോ?", "sukhamaayiro?"),
"Manipuri": ("नमस्कार, नखोंगबा तौ?", "namaskaar, nakhongba tau?"),
"Marathi": ("तू कसा आहेस?", "tu kasa ahes?"),
"Nepali": ("तिमी कस्तो छौ?", "timi kasto chau?"),
"Odia": ("ତୁମେ କେମିତି ଅଛ?", "tume kemiti achha?"),
"Punjabi": ("ਤੁਸੀਂ ਕਿਵੇਂ ਹੋ?", "tusi kiven ho?"),
"Sanskrit": ("भवतः कथम् अस्ति?", "bhavatah katham asti?"),
"Santali": ("ᱥᱟᱱᱛᱟᱲᱤ ᱠᱚᱱᱛᱮᱞᱤ ᱟᱹᱲᱤ?", "santalii konteli adii?"),
"Sindhi": ("توهان ڪيئن آهيو؟", "tohan kayn aahiyo?"),
"Tamil": ("நீங்கள் எப்படி இருக்கிறீர்கள்?", "neenga epdi irukeenga?"),
"Telugu": ("మీరు ఎలా ఉన్నారు?", "meeru ela unnaru?"),
"Urdu": ("آپ کیسے ہیں؟", "aap kaise hain?")
}
# Expanded language mapping (covers common misdetections)
LID_TO_TRANSLATE = {
# Hindi variants
"hin_Deva": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
"hin_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
"mai_Deva": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Maithili→Hindi
"mai_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"},
"nep_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Nepali→Hindi
"snd_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Sindhi→Hindi
"kok_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Konkani→Hindi
"brx_Latn": {"name": "Hindi", "script": sanscript.DEVANAGARI, "it_code": "hin_Deva"}, # Bodo→Hindi
# Bengali variants
"ben_Beng": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
"ben_Latn": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
"asm_Beng": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"}, # Assamese→Bengali
"asm_Latn": {"name": "Bengali", "script": sanscript.BENGALI, "it_code": "ben_Beng"},
# Tamil variants
"tam_Tamil": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
"tam_Taml": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
"tam_Latn": {"name": "Tamil", "script": sanscript.TAMIL, "it_code": "tam_Taml"},
# Telugu variants
"tel_Telu": {"name": "Telugu", "script": sanscript.TELUGU, "it_code": "tel_Telu"},
"tel_Latn": {"name": "Telugu", "script": sanscript.TELUGU, "it_code": "tel_Telu"},
# Kannada variants
"kan_Knda": {"name": "Kannada", "script": sanscript.KANNADA, "it_code": "kan_Knda"},
"kan_Latn": {"name": "Kannada", "script": sanscript.KANNADA, "it_code": "kan_Knda"},
# Malayalam variants
"mal_Mlym": {"name": "Malayalam", "script": sanscript.MALAYALAM, "it_code": "mal_Mlym"},
"mal_Latn": {"name": "Malayalam", "script": sanscript.MALAYALAM, "it_code": "mal_Mlym"},
# Gujarati variants
"guj_Gujr": {"name": "Gujarati", "script": sanscript.GUJARATI, "it_code": "guj_Gujr"},
"guj_Latn": {"name": "Gujarati", "script": sanscript.GUJARATI, "it_code": "guj_Gujr"},
# Punjabi variants
"pan_Guru": {"name": "Punjabi", "script": sanscript.GURMUKHI, "it_code": "pan_Guru"},
"pan_Latn": {"name": "Punjabi", "script": sanscript.GURMUKHI, "it_code": "pan_Guru"},
# Marathi variants
"mar_Deva": {"name": "Marathi", "script": sanscript.DEVANAGARI, "it_code": "mar_Deva"},
"mar_Latn": {"name": "Marathi", "script": sanscript.DEVANAGARI, "it_code": "mar_Deva"},
# Urdu variants
"urd_Arab": {"name": "Urdu", "script": 'urdu', "it_code": "urd_Arab"},
"urd_Latn": {"name": "Urdu", "script": 'urdu', "it_code": "urd_Arab"},
}
def enhanced_transliterate_robust(text, target_script):
"""Enhanced transliteration with better romanization handling"""
try:
cleaned_text = text.lower().strip()
replacements = {
'kh': 'kh', 'ch': 'ch', 'th': 'th', 'ph': 'ph',
'bh': 'bh', 'dh': 'dh', 'gh': 'gh', 'jh': 'jh',
'aa': 'A', 'ee': 'I', 'oo': 'U', 'ou': 'au'
}
for old, new in replacements.items():
cleaned_text = cleaned_text.replace(old, new)
result = transliterate(cleaned_text, sanscript.ITRANS, target_script)
return result if result else text
except Exception as e:
print(f"Transliteration error: {e}")
return text
def test_all_22_languages(texts, batch_size=32):
"""Complete testing function for all 22 languages"""
results = []
preds = lid.batch_predict(texts, batch_size)
for item in preds:
if isinstance(item, dict):
text = item.get("text", "")
lang_code = item.get("lang", item.get("pred_lang", ""))
score = float(item.get("score", 0.0))
model_name = item.get("model", "")
else:
text, lang_code, score, model_name = item
is_romanized = lang_code.endswith("_Latn")
if lang_code not in LID_TO_TRANSLATE:
translation = f"Language '{lang_code}' not supported"
method = "Unsupported"
else:
try:
lang_info = LID_TO_TRANSLATE[lang_code]
src_code = lang_info["it_code"]
if is_romanized:
native_text = enhanced_transliterate_robust(text, lang_info["script"])
method = f"Transliteration+IndicTrans2 (detected: {lang_code})"
print(f"Romanized: '{text}' → '{native_text}'")
else:
native_text = text
method = f"IndicTrans2 (detected: {lang_code})"
# Translate with IndicTrans2
pre = ip.preprocess_batch([native_text], src_lang=src_code, tgt_lang="eng_Latn")
inputs = tokenizer(pre, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
out = model.generate(**inputs, num_beams=5, max_length=256, early_stopping=True)
dec = tokenizer.batch_decode(out, skip_special_tokens=True)
post = ip.postprocess_batch(dec, lang=src_code)
translation = post[0]
except Exception as e:
translation = f"Translation error: {str(e)}"
method = "Error"
results.append({
"language": text[:20] + "..." if len(text) > 20 else text,
"original_text": text,
"detected_lang": lang_code,
"script_type": "Romanized" if is_romanized else "Native",
"confidence": f"{score:.3f}",
"method": method,
"english_translation": translation
})
return pd.DataFrame(results)
# Create test dataset with all 44 samples (22 native + 22 romanized)
print("🔍 Creating test dataset for all 22 official Indian languages...")
all_test_texts = []
for lang, (native, roman) in sample_sentences.items():
all_test_texts.append(native)
all_test_texts.append(roman)
print(f"📊 Testing {len(all_test_texts)} samples ({len(sample_sentences)} languages × 2 scripts)...")
# Run the complete test
df_results = test_all_22_languages(all_test_texts, batch_size=32)
# Display results
print("\n🎯 COMPLETE TEST RESULTS:")
display(df_results)
# Summary statistics
print(f"\n📈 SUMMARY STATISTICS:")
print(f"Total samples tested: {len(df_results)}")
print(f"Languages detected: {df_results['detected_lang'].nunique()}")
print(f"Native script samples: {len(df_results[df_results['script_type'] == 'Native'])}")
print(f"Romanized samples: {len(df_results[df_results['script_type'] == 'Romanized'])}")
print(f"Successfully translated: {len(df_results[~df_results['english_translation'].str.contains('error|not supported', case=False)])}")
import pandas as pd
def detailed_translation_summary(df_results):
"""
Generate comprehensive detailed summary of translation results
"""
# Flag successful translations
df_results['successful_translation'] = ~df_results['english_translation'].str.contains('error|not supported', case=False, na=False)
print("\n=========== OVERALL SUMMARY ===========")
print(f"Total samples tested: {len(df_results)}")
print(f"Languages detected: {df_results['detected_lang'].nunique()}")
print(f"Native script samples: {df_results[df_results['script_type'] == 'Native'].shape[0]}")
print(f"Romanized samples: {df_results[df_results['script_type'] == 'Romanized'].shape}")
print(f"Successfully translated: {df_results['successful_translation'].sum()}")
overall_success_rate = (df_results['successful_translation'].sum() / len(df_results) * 100)
print(f"Overall success rate: {overall_success_rate:.1f}%")
print("\n=========== DETAILED LANGUAGE BREAKDOWN ===========")
# Per-language analysis
lang_summary = df_results.groupby('detected_lang').agg(
total_samples=('original_text', 'count'),
native_count=('script_type', lambda x: (x == 'Native').sum()),
romanized_count=('script_type', lambda x: (x == 'Romanized').sum()),
mean_confidence=('confidence', lambda x: pd.to_numeric(x, errors='coerce').mean()),
success=('successful_translation', 'sum'),
error_count=('successful_translation', lambda x: (~x).sum())
).reset_index().sort_values('total_samples', ascending=False)
lang_summary['success_rate'] = (lang_summary['success'] / lang_summary['total_samples'] * 100).round(1)
print(lang_summary)
print("\n=========== TOP PERFORMING LANGUAGES ===========")
top_performers = lang_summary[lang_summary['success_rate'] >= 90].sort_values('success_rate', ascending=False)
if len(top_performers) > 0:
print(top_performers[['detected_lang', 'total_samples', 'success_rate']])
else:
print("No languages with 90%+ success rate")
print("\n=========== CHALLENGING LANGUAGES ===========")
challenging = lang_summary[lang_summary['success_rate'] < 50].sort_values('success_rate')
if len(challenging) > 0:
print(challenging[['detected_lang', 'total_samples', 'success_rate']])
else:
print("No languages with <50% success rate")
print("\n=========== ERROR ANALYSIS ===========")
error_df = df_results[~df_results['successful_translation']]
print(f"Total errors: {len(error_df)}")
if len(error_df) > 0:
print("\nError samples:")
print(error_df[['original_text', 'detected_lang', 'script_type', 'confidence', 'english_translation']])
else:
print("No errors found!")
print("\n=========== SUCCESS BREAKDOWN BY SCRIPT ===========")
script_summary = df_results.groupby('script_type').agg(
total_samples=('original_text', 'count'),
successful=('successful_translation', 'sum'),
success_rate=('successful_translation', lambda x: x.mean() * 100)
).round(1)
print(script_summary)
print("\n=========== DETECTION CONFIDENCE ANALYSIS ===========")
confidence_summary = lang_summary[['detected_lang', 'mean_confidence']].sort_values('mean_confidence', ascending=False)
print("Top 10 most confident detections:")
print(confidence_summary.head(10))
return lang_summary, script_summary, error_df
# ===== HOW TO USE =====
print("✅ Detailed summary function defined")
print("\n📋 To run on your test results:")
print(" lang_summary, script_summary, error_df = detailed_translation_summary(df_results)")
print(" display(lang_summary)")
print(" display(error_df)")
lang_summary, script_summary, error_df = detailed_translation_summary(df_results)
display(lang_summary)
display(error_df)
|