Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| import scipy.io.wavfile as wavfile | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| caption_image = pipeline("image-to-text", | |
| model="Salesforce/blip-image-captioning-large", device=device) | |
| narrator = pipeline("text-to-speech", | |
| model="kakao-enterprise/vits-ljs") | |
| def generate_audio(text): | |
| # Generate the narrated text | |
| narrated_text = narrator(text) | |
| # Save the audio to a WAV file | |
| wavfile.write("output.wav", rate=narrated_text["sampling_rate"], | |
| data=narrated_text["audio"][0]) | |
| # Return the path to the saved audio file | |
| return "output.wav" | |
| def caption_my_image(pil_image): | |
| semantics = caption_image(images=pil_image)[0]['generated_text'] | |
| return generate_audio(semantics) | |
| demo = gr.Interface(fn=caption_my_image, | |
| inputs=[gr.Image(label="Select Image",type="pil")], | |
| outputs=[gr.Audio(label="Image Caption")], | |
| title="PicTalker | ImageNarrator | SnapSpeech | SpeakScene", | |
| description="Turn photos into phonetic wonders with audio captions.", | |
| allow_flagging="manual", | |
| flagging_dir="flagged") | |
| demo.launch() | |