Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| import soundfile as sf | |
| import librosa | |
| from matplotlib import pyplot as plt | |
| from transformers import AutoFeatureExtractor, AutoModelForAudioFrameClassification | |
| from recitations_segmenter import segment_recitations, clean_speech_intervals | |
| import io | |
| from PIL import Image | |
| import tempfile | |
| import os | |
| import zipfile | |
| # Setup device and model | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| print(f"Loading model on {device}...") | |
| processor = AutoFeatureExtractor.from_pretrained("obadx/recitation-segmenter-v2") | |
| model = AutoModelForAudioFrameClassification.from_pretrained( | |
| "obadx/recitation-segmenter-v2", | |
| torch_dtype=dtype, | |
| device_map=device | |
| ) | |
| print("Model loaded successfully!") | |
| def read_audio(path, sampling_rate=16000): | |
| """قراءة ملف صوتي وتحويله""" | |
| audio, sr = sf.read(path) | |
| if len(audio.shape) > 1: | |
| audio = audio.mean(axis=1) | |
| if sr != sampling_rate: | |
| audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate) | |
| return torch.tensor(audio).float() | |
| def get_interval(x: np.ndarray, intervals: list[list[int]], idx: int, sr=16000, delta=0.3, exact_boundries=False): | |
| """استخراج مقطع صوتي من الفواصل""" | |
| start = int((intervals[idx][0] - delta) * sr) | |
| end = int(intervals[idx][1] * sr) | |
| if not exact_boundries: | |
| start = 0 if idx == 0 else int((intervals[idx][0] - delta) * sr) | |
| end = len(x) if idx == len(intervals) - 1 else int((intervals[idx + 1][0] - delta) * sr) | |
| return x[start: end] | |
| def plot_signal(x: np.ndarray, intervals: list[list[float]], log_min_count=5, sr=16000): | |
| """رسم الإشارة الصوتية مع الفواصل""" | |
| fig, ax = plt.subplots(figsize=(20, 4)) | |
| if isinstance(x, torch.Tensor): | |
| x = x.numpy() | |
| ax.plot(x, linewidth=0.5) | |
| intervals_flat = np.array(intervals).reshape(-1) | |
| diffs = np.diff(intervals_flat) | |
| min_silence_diffs_idx = float('-inf') | |
| info_text = "" | |
| if len(intervals_flat) > 2: | |
| silence_diffs = diffs[1: len(diffs): 2] | |
| min_silence_diffs_ids = silence_diffs.argsort()[: log_min_count] | |
| min_silence_diffs_idx = min_silence_diffs_ids[0] * 2 + 1 | |
| info_text += f'Minimum Silence Interval IDs: {min_silence_diffs_ids}\n' | |
| info_text += f'Minimum Silence Intervals: {silence_diffs[min_silence_diffs_ids]}\n' | |
| speech_diffs = diffs[0: len(diffs): 2] | |
| min_speech_diffs_ids = speech_diffs.argsort()[: log_min_count] | |
| info_text += f'Minimum Speech Interval IDs: {min_speech_diffs_ids}\n' | |
| info_text += f'Minimum Speech Intervals: {speech_diffs[min_speech_diffs_ids]}\n' | |
| ymin = x.min() | |
| ymax = x.max() | |
| for idx, val in enumerate(intervals_flat): | |
| color = 'red' | |
| if idx in [min_silence_diffs_idx, min_silence_diffs_idx + 1]: | |
| color = 'green' | |
| ax.axvline(x=val * sr, ymin=0, ymax=1, color=color, alpha=0.6, linewidth=1) | |
| ax.set_xlabel('Samples') | |
| ax.set_ylabel('Amplitude') | |
| ax.set_title('Audio Signal with Detected Intervals') | |
| ax.grid(True, alpha=0.3) | |
| plt.tight_layout() | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format='png', dpi=100, bbox_inches='tight') | |
| buf.seek(0) | |
| img = Image.open(buf) | |
| plt.close() | |
| return img, info_text | |
| def process_audio(audio_file, min_silence_ms, min_speech_ms, pad_ms): | |
| """معالجة الملف الصوتي وتقطيعه""" | |
| if audio_file is None: | |
| return None, "⚠️ من فضلك ارفع ملف صوتي", None, [] | |
| try: | |
| # قراءة الملف | |
| wav = read_audio(audio_file) | |
| # تقسيم التلاوة | |
| sampled_outputs = segment_recitations( | |
| [wav], | |
| model, | |
| processor, | |
| device=device, | |
| dtype=dtype, | |
| batch_size=4, | |
| ) | |
| # تنظيف الفواصل | |
| clean_out = clean_speech_intervals( | |
| sampled_outputs[0].speech_intervals, | |
| sampled_outputs[0].is_complete, | |
| min_silence_duration_ms=min_silence_ms, | |
| min_speech_duration_ms=min_speech_ms, | |
| pad_duration_ms=pad_ms, | |
| return_seconds=True, | |
| ) | |
| intervals = clean_out.clean_speech_intervals | |
| # رسم الإشارة | |
| plot_img, stats_text = plot_signal(wav, intervals) | |
| # استخراج المقاطع الصوتية | |
| num_segments = len(intervals) | |
| result_text = f"✅ تم التقطيع بنجاح!\n\n" | |
| result_text += f"📊 عدد المقاطع: {num_segments}\n" | |
| result_text += f"⏱️ طول الملف الأصلي: {len(wav)/16000:.2f} ثانية\n\n" | |
| result_text += "=" * 50 + "\n" | |
| result_text += stats_text | |
| result_text += "=" * 50 + "\n\n" | |
| # إنشاء مجلد مؤقت للمقاطع | |
| temp_dir = tempfile.mkdtemp() | |
| segment_files = [] | |
| for idx in range(num_segments): | |
| audio_seg = get_interval( | |
| x=wav, | |
| intervals=intervals, | |
| idx=idx, | |
| delta=0.050, | |
| exact_boundries=True | |
| ) | |
| if isinstance(audio_seg, torch.Tensor): | |
| audio_seg = audio_seg.cpu().numpy() | |
| duration = len(audio_seg) / 16000 | |
| result_text += f"مقطع {idx + 1}: من {intervals[idx][0]:.2f}s إلى {intervals[idx][1]:.2f}s (المدة: {duration:.2f}s)\n" | |
| # حفظ المقطع | |
| segment_path = os.path.join(temp_dir, f"segment_{idx+1:03d}.wav") | |
| sf.write(segment_path, audio_seg, 16000) | |
| segment_files.append(segment_path) | |
| # إنشاء ملف ZIP | |
| zip_path = os.path.join(temp_dir, "segments.zip") | |
| with zipfile.ZipFile(zip_path, 'w') as zipf: | |
| for seg_file in segment_files: | |
| zipf.write(seg_file, os.path.basename(seg_file)) | |
| # إنشاء HTML لعرض المقاطع | |
| audio_html = "<div style='max-height: 500px; overflow-y: auto;'>" | |
| for idx, seg_file in enumerate(segment_files): | |
| audio_html += f""" | |
| <div style='margin: 10px 0; padding: 10px; border: 1px solid #ddd; border-radius: 5px;'> | |
| <h4 style='margin: 5px 0;'>🎵 مقطع {idx + 1}</h4> | |
| <audio controls style='width: 100%;'> | |
| <source src='file/{seg_file}' type='audio/wav'> | |
| </audio> | |
| </div> | |
| """ | |
| audio_html += "</div>" | |
| return plot_img, result_text, zip_path, segment_files | |
| except Exception as e: | |
| return None, f"❌ حدث خطأ: {str(e)}", None, [] | |
| # إنشاء واجهة Gradio | |
| with gr.Blocks(title="تقطيع التلاوات القرآنية") as demo: | |
| gr.Markdown(""" | |
| # 🕌 تقطيع التلاوات القرآنية | |
| أداة لتقطيع ملفات التلاوات القرآنية تلقائياً باستخدام AI | |
| **استخدم Model:** `obadx/recitation-segmenter-v2` | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| audio_input = gr.Audio( | |
| label="📤 ارفع ملف التلاوة", | |
| type="filepath" | |
| ) | |
| with gr.Accordion("⚙️ إعدادات التقطيع", open=True): | |
| min_silence = gr.Slider( | |
| minimum=10, | |
| maximum=500, | |
| value=30, | |
| step=10, | |
| label="أقل مدة للسكوت (ميلي ثانية)" | |
| ) | |
| min_speech = gr.Slider( | |
| minimum=10, | |
| maximum=500, | |
| value=30, | |
| step=10, | |
| label="أقل مدة للكلام (ميلي ثانية)" | |
| ) | |
| padding = gr.Slider( | |
| minimum=0, | |
| maximum=200, | |
| value=30, | |
| step=10, | |
| label="Padding (ميلي ثانية)" | |
| ) | |
| process_btn = gr.Button("🚀 ابدأ التقطيع", variant="primary", size="lg") | |
| with gr.Column(scale=2): | |
| plot_output = gr.Image(label="📈 الإشارة الصوتية") | |
| result_text = gr.Textbox( | |
| label="📋 النتائج", | |
| lines=15, | |
| max_lines=20 | |
| ) | |
| gr.Markdown("### 💾 تحميل المقاطع") | |
| zip_download = gr.File(label="📦 حمل كل المقاطع (ZIP)") | |
| gr.Markdown("### 🎵 استماع للمقاطع") | |
| # عرض المقاطع الصوتية | |
| segment_outputs = [] | |
| for i in range(50): # حد أقصى 50 مقطع | |
| audio_out = gr.Audio(label=f"مقطع {i+1}", visible=False) | |
| segment_outputs.append(audio_out) | |
| def process_and_show(audio, min_sil, min_sp, pad): | |
| plot, text, zip_file, segments = process_audio(audio, min_sil, min_sp, pad) | |
| outputs = [plot, text, zip_file] | |
| # إظهار المقاطع | |
| for i in range(50): | |
| if i < len(segments): | |
| outputs.append(gr.Audio(value=segments[i], visible=True, label=f"مقطع {i+1}")) | |
| else: | |
| outputs.append(gr.Audio(visible=False)) | |
| return outputs | |
| process_btn.click( | |
| fn=process_and_show, | |
| inputs=[audio_input, min_silence, min_speech, padding], | |
| outputs=[plot_output, result_text, zip_download] + segment_outputs | |
| ) | |
| gr.Markdown(""" | |
| --- | |
| ### 💡 معلومات | |
| - الأداة تستخدم نموذج AI مدرب خصيصاً لتقطيع التلاوات القرآنية | |
| - يتم اكتشاف فترات الكلام والسكوت تلقائياً | |
| - يمكنك تحميل كل المقاطع دفعة واحدة من ملف ZIP | |
| - أو الاستماع لكل مقطع على حدة | |
| """) | |
| if __name__ == "__main__": | |
| demo.launch() | |