local embedding
Browse files- rag.py +6 -1
- requirements.txt +1 -0
rag.py
CHANGED
|
@@ -12,7 +12,12 @@ df['content']=df['product']+"; "+df['purpose']+"; "+df['benefit']+"; "+df['fee']
|
|
| 12 |
|
| 13 |
corpus = [row['content'] for i,row in df.iterrows()]
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
class RecommendProduct(dspy.Signature):
|
| 17 |
"""
|
| 18 |
Recommend RBC financial product based on verbatim
|
|
|
|
| 12 |
|
| 13 |
corpus = [row['content'] for i,row in df.iterrows()]
|
| 14 |
|
| 15 |
+
'huggingface/BAAI/bge-small-en-v1.5'
|
| 16 |
+
from sentence_transformers import SentenceTransformer
|
| 17 |
+
|
| 18 |
+
# Load an extremely efficient local model for retrieval
|
| 19 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device="cpu")
|
| 20 |
+
embedder = dspy.Embedder(model.encode)
|
| 21 |
class RecommendProduct(dspy.Signature):
|
| 22 |
"""
|
| 23 |
Recommend RBC financial product based on verbatim
|
requirements.txt
CHANGED
|
@@ -2,6 +2,7 @@ markdownify
|
|
| 2 |
requests
|
| 3 |
duckduckgo_search
|
| 4 |
pandas
|
|
|
|
| 5 |
langchain
|
| 6 |
langgraph
|
| 7 |
litellm==1.63
|
|
|
|
| 2 |
requests
|
| 3 |
duckduckgo_search
|
| 4 |
pandas
|
| 5 |
+
sentence_transformers
|
| 6 |
langchain
|
| 7 |
langgraph
|
| 8 |
litellm==1.63
|