Spaces:
Sleeping
Sleeping
File size: 10,769 Bytes
10e9b7d aea1727 10e9b7d eccf8e4 3c4371f 4863f6e aea1727 4863f6e 10e9b7d aea1727 d59f015 e80aab9 3db6293 aea1727 e80aab9 31243f4 d59f015 31243f4 aea1727 31243f4 aea1727 72f2f08 4863f6e 4021bf3 aea1727 7d65c66 3c4371f aea1727 e80aab9 aea1727 36ed51a 3c4371f aea1727 eccf8e4 aea1727 7d65c66 31243f4 aea1727 31243f4 aea1727 7d65c66 aea1727 e80aab9 aea1727 31243f4 aea1727 31243f4 aea1727 31243f4 aea1727 31243f4 aea1727 e80aab9 aea1727 e80aab9 aea1727 e80aab9 aea1727 31243f4 e80aab9 aea1727 e80aab9 aea1727 e80aab9 aea1727 3c4371f e80aab9 31243f4 7d65c66 aea1727 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import re
import base64
from enum import Enum
from pydantic import BaseModel
from io import BytesIO
from tempfile import SpooledTemporaryFile
from typing import Optional
import logging
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from concurrent.futures import ThreadPoolExecutor, as_completed
from agent import gaia_agent
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ContentType(Enum):
IMAGE = "image"
PDF = "pdf"
AUDIO = "audio"
TEXT = "text"
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_WORKERS = 8
class LLMFile(BaseModel):
filename: str
file: bytes
mime: str
content_type: ContentType
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str, content: Optional[LLMFile]) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
message_content = [{"type": "text", "text": question}]
if content:
if content.content_type == ContentType.AUDIO:
media = {
"type": "input_audio",
"input_audio": {"data": base64.b64encode(content.file).encode("ascii"), "format": "wav"}
}
elif content.content_type == ContentType.IMAGE:
media = {
"type": "image",
"image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(content.file).encode("ascii")}"}
}
elif content.content_type == ContentType.PDF:
media = {
"type": "file",
"file": {
"filename": content.filename,
"file_data": f"data:application/pdf;base64,{base64.b64encode(content.file).encode("ascii")}",
}
}
message_content.append(media)
messages = gaia_agent.invoke({"messages": [
HumanMessage(content=message_content)
]})
message = messages['messages'][-1].content
match = re.search(r'FINAL ANSWER:\s*(.*)', message)
if match:
answer = match.group(1)
else:
answer = "ERROR"
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
if not profile:
logger.warning("User not logged in.")
return "Please Login to Hugging Face with the button.", None
username = profile.username.strip()
logger.info(f"User logged in: {username}")
session = requests.Session()
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# --- Fetch questions ---
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = session.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
raise ValueError("Fetched questions list is empty or invalid.")
logger.info(f"Fetched {len(questions_data)} questions.")
except Exception as e:
logger.exception("Error fetching questions.")
return f"Error fetching questions: {e}", None
# --- Instantiate agent ---
try:
agent = BasicAgent()
except Exception as e:
logger.exception("Error initializing agent.")
return f"Error initializing agent: {e}", None
# --- Run agent in parallel ---
def process_question(item):
task_id = item.get("task_id")
question = item.get("question")
if not task_id or question is None:
return None, {"Task ID": task_id, "Question": question, "Submitted Answer": "INVALID QUESTION FORMAT"}
if item.get("filename", None):
# --- Fetch file ---
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
try:
response = session.get(file_url, timeout=15)
response.raise_for_status()
content_disposition = response.headers.get("content-disposition", "")
filename = task_id + ".bin"
if "filename=" in content_disposition:
filename = content_disposition.split("filename=")[-1].strip('"')
mime = response.headers.get("content-type", "")
if mime.startswith("audio/"):
media = LLMFile(filename=filename, mime=mime, content_type=ContentType.AUDIO, file=response.content)
elif mime.startswith("image/"):
media = LLMFile(filename=filename, mime=mime, content_type=ContentType.IMAGE, file=response.content)
elif mime.startswith("image/"):
media = LLMFile(filename=filename, mime=mime, content_type=ContentType.IMAGE, file=response.content)
elif mime.startswith("text/"):
media = LLMFile(filename=filename, mime=mime, content_type=ContentType.TEXT, file=response.content)
except Exception as e:
logger.exception("Error fetching file for task id %s.", str(task_id))
return f"Error fetching file for task id ({task_id}): {e}", None
try:
answer = agent(question, media if item.get("filename", None) else None)
return {"task_id": task_id, "submitted_answer": answer}, {
"Task ID": task_id, "Question": question, "Submitted Answer": answer
}
except Exception as e:
logger.warning(f"Agent error on task {task_id}: {e}")
return None, {
"Task ID": task_id, "Question": question, "Submitted Answer": f"AGENT ERROR: {e}"
}
answers_payload = []
results_log = []
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
futures = [executor.submit(process_question, item) for item in questions_data]
for future in as_completed(futures):
answer, log = future.result()
if answer:
answers_payload.append(answer)
results_log.append(log)
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# --- Submit answers ---
submit_url = f"{DEFAULT_API_URL}/submit"
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload,
}
logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = session.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result.get('username')}\n"
f"Overall Score: {result.get('score', 'N/A')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
f"Message: {result.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except requests.exceptions.HTTPError as e:
try:
error_detail = e.response.json().get("detail", e.response.text)
except Exception:
error_detail = e.response.text[:500]
status_message = f"Submission Failed: {error_detail}"
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
except Exception as e:
status_message = f"Unexpected error during submission: {e}"
logger.error(status_message)
return status_message, pd.DataFrame(results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |