File size: 10,769 Bytes
10e9b7d
aea1727
 
 
 
 
 
 
 
10e9b7d
eccf8e4
3c4371f
4863f6e
aea1727
4863f6e
 
10e9b7d
aea1727
 
 
 
 
 
 
 
 
d59f015
e80aab9
3db6293
aea1727
 
 
 
 
 
 
e80aab9
31243f4
d59f015
31243f4
 
 
aea1727
31243f4
aea1727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f2f08
4863f6e
4021bf3
aea1727
 
 
 
7d65c66
3c4371f
aea1727
 
e80aab9
aea1727
 
36ed51a
3c4371f
aea1727
 
eccf8e4
aea1727
7d65c66
31243f4
 
aea1727
 
 
 
31243f4
aea1727
 
 
 
 
7d65c66
aea1727
 
e80aab9
aea1727
 
31243f4
aea1727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
aea1727
 
 
 
31243f4
aea1727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
 
 
aea1727
 
 
 
 
 
 
e80aab9
aea1727
e80aab9
aea1727
e80aab9
aea1727
31243f4
e80aab9
aea1727
 
 
 
e80aab9
aea1727
 
e80aab9
 
aea1727
 
 
3c4371f
 
 
e80aab9
31243f4
7d65c66
aea1727
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import re
import base64
from enum import Enum
from pydantic import BaseModel
from io import BytesIO
from tempfile import SpooledTemporaryFile
from typing import Optional
import logging
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
from concurrent.futures import ThreadPoolExecutor, as_completed

from agent import gaia_agent

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class ContentType(Enum):
    IMAGE = "image"
    PDF = "pdf"
    AUDIO = "audio"
    TEXT = "text"

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_WORKERS = 8

class LLMFile(BaseModel):
    filename: str
    file: bytes
    mime: str
    content_type: ContentType

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
    def __call__(self, question: str, content: Optional[LLMFile]) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        
        message_content = [{"type": "text", "text": question}]
        
        if content:
            if content.content_type == ContentType.AUDIO:
                media = {
                    "type": "input_audio",
                    "input_audio": {"data": base64.b64encode(content.file).encode("ascii"), "format": "wav"}
                }
            elif content.content_type == ContentType.IMAGE:
                media = {
                    "type": "image",
                    "image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(content.file).encode("ascii")}"}
                }
            elif content.content_type == ContentType.PDF:
                media = {
                    "type": "file",
                    "file": {
                        "filename": content.filename,
                        "file_data": f"data:application/pdf;base64,{base64.b64encode(content.file).encode("ascii")}",
                    }
                }
                
            message_content.append(media)
        
        messages = gaia_agent.invoke({"messages": [
            HumanMessage(content=message_content)
        ]})
        message = messages['messages'][-1].content
        
        match = re.search(r'FINAL ANSWER:\s*(.*)', message)
        if match:
            answer = match.group(1)
        else:
            answer = "ERROR"
            
        print(f"Agent returning answer: {answer}")
        return answer


def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
    if not profile:
        logger.warning("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    username = profile.username.strip()
    logger.info(f"User logged in: {username}")

    session = requests.Session()
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # --- Fetch questions ---
    questions_url = f"{DEFAULT_API_URL}/questions"
    try:
        response = session.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            raise ValueError("Fetched questions list is empty or invalid.")
        logger.info(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        logger.exception("Error fetching questions.")
        return f"Error fetching questions: {e}", None


    # --- Instantiate agent ---
    try:
        agent = BasicAgent()
    except Exception as e:
        logger.exception("Error initializing agent.")
        return f"Error initializing agent: {e}", None

    # --- Run agent in parallel ---
    def process_question(item):
        task_id = item.get("task_id")
        question = item.get("question")
        if not task_id or question is None:
            return None, {"Task ID": task_id, "Question": question, "Submitted Answer": "INVALID QUESTION FORMAT"}
        
        if item.get("filename", None):
            # --- Fetch file ---
            file_url = f"{DEFAULT_API_URL}/files/{task_id}"
            try:
                response = session.get(file_url, timeout=15)
                response.raise_for_status()
                
                content_disposition = response.headers.get("content-disposition", "")
                filename = task_id + ".bin"
                if "filename=" in content_disposition:
                    filename = content_disposition.split("filename=")[-1].strip('"')
                    
                mime = response.headers.get("content-type", "")
                
                if mime.startswith("audio/"):
                    media = LLMFile(filename=filename, mime=mime, content_type=ContentType.AUDIO, file=response.content)
                elif mime.startswith("image/"):
                    media = LLMFile(filename=filename, mime=mime, content_type=ContentType.IMAGE, file=response.content)
                elif mime.startswith("image/"):
                    media = LLMFile(filename=filename, mime=mime, content_type=ContentType.IMAGE, file=response.content)
                elif mime.startswith("text/"):
                    media = LLMFile(filename=filename, mime=mime, content_type=ContentType.TEXT, file=response.content)

            except Exception as e:
                logger.exception("Error fetching file for task id %s.", str(task_id))
                return f"Error fetching file for task id ({task_id}): {e}", None
        
        
        try:
            answer = agent(question, media if item.get("filename", None) else None)
            return {"task_id": task_id, "submitted_answer": answer}, {
                "Task ID": task_id, "Question": question, "Submitted Answer": answer
            }
        except Exception as e:
            logger.warning(f"Agent error on task {task_id}: {e}")
            return None, {
                "Task ID": task_id, "Question": question, "Submitted Answer": f"AGENT ERROR: {e}"
            }

    answers_payload = []
    results_log = []

    with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
        futures = [executor.submit(process_question, item) for item in questions_data]
        for future in as_completed(futures):
            answer, log = future.result()
            if answer:
                answers_payload.append(answer)
            results_log.append(log)

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # --- Submit answers ---
    submit_url = f"{DEFAULT_API_URL}/submit"
    submission_data = {
        "username": username,
        "agent_code": agent_code,
        "answers": answers_payload,
    }

    logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = session.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result.get('username')}\n"
            f"Overall Score: {result.get('score', 'N/A')}% "
            f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
            f"Message: {result.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)

    except requests.exceptions.HTTPError as e:
        try:
            error_detail = e.response.json().get("detail", e.response.text)
        except Exception:
            error_detail = e.response.text[:500]
        status_message = f"Submission Failed: {error_detail}"
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
    except Exception as e:
        status_message = f"Unexpected error during submission: {e}"

    logger.error(status_message)
    return status_message, pd.DataFrame(results_log)


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)