Spaces:
Sleeping
Sleeping
Kevin King
commited on
Commit
·
d5ac657
1
Parent(s):
e83cd54
REFAC: Improve emotion mapping and display logic in Streamlit app
Browse files- src/streamlit_app.py +24 -15
src/streamlit_app.py
CHANGED
|
@@ -26,7 +26,6 @@ st.title("AffectLink: Post-Hoc Emotion Analysis")
|
|
| 26 |
st.write("Upload a short video clip (under 30 seconds) to see a multimodal emotion analysis.")
|
| 27 |
|
| 28 |
# --- Logger Configuration ---
|
| 29 |
-
# [Logger setup remains the same]
|
| 30 |
logging.basicConfig(level=logging.INFO)
|
| 31 |
logging.getLogger('deepface').setLevel(logging.ERROR)
|
| 32 |
logging.getLogger('huggingface_hub').setLevel(logging.WARNING)
|
|
@@ -34,10 +33,11 @@ logging.getLogger('moviepy').setLevel(logging.ERROR)
|
|
| 34 |
|
| 35 |
|
| 36 |
# --- Emotion Mappings ---
|
| 37 |
-
|
|
|
|
| 38 |
TEXT_TO_UNIFIED = {'neutral': 'neutral', 'joy': 'happy', 'sadness': 'sad', 'anger': 'angry'}
|
| 39 |
SER_TO_UNIFIED = {'neu': 'neutral', 'hap': 'happy', 'sad': 'sad', 'ang': 'angry'}
|
| 40 |
-
FACIAL_TO_UNIFIED = {'neutral': 'neutral', 'happy': 'happy', 'sad': 'sad', 'angry': 'angry'}
|
| 41 |
AUDIO_SAMPLE_RATE = 16000
|
| 42 |
|
| 43 |
# --- Model Loading ---
|
|
@@ -58,12 +58,12 @@ def create_unified_vector(scores_dict, mapping_dict):
|
|
| 58 |
"""Creates a normalized vector from a dictionary of scores based on a mapping."""
|
| 59 |
vector = np.zeros(len(UNIFIED_EMOTIONS))
|
| 60 |
for label, score in scores_dict.items():
|
|
|
|
| 61 |
unified_label = mapping_dict.get(label)
|
| 62 |
-
if unified_label
|
| 63 |
idx = UNIFIED_EMOTIONS.index(unified_label)
|
| 64 |
vector[idx] += score
|
| 65 |
|
| 66 |
-
# Normalize the vector
|
| 67 |
norm = np.linalg.norm(vector)
|
| 68 |
if norm > 0:
|
| 69 |
vector /= norm
|
|
@@ -107,7 +107,6 @@ if uploaded_file is not None:
|
|
| 107 |
timestamp = frame_count / fps
|
| 108 |
analysis = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False, silent=True)
|
| 109 |
if isinstance(analysis, list) and len(analysis) > 0:
|
| 110 |
-
# Store the full emotion dictionary for the plot
|
| 111 |
fer_timeline[timestamp] = analysis[0]['emotion']
|
| 112 |
frame_count += 1
|
| 113 |
finally:
|
|
@@ -123,7 +122,6 @@ if uploaded_file is not None:
|
|
| 123 |
video_clip.audio.write_audiofile(taudio.name, fps=AUDIO_SAMPLE_RATE, logger=None)
|
| 124 |
temp_audio_path = taudio.name
|
| 125 |
|
| 126 |
-
# Run all audio models
|
| 127 |
result = whisper_model.transcribe(temp_audio_path, fp16=False)
|
| 128 |
transcribed_text = result['text'].strip()
|
| 129 |
audio_analysis_results['Transcription'] = transcribed_text if transcribed_text else "No speech detected."
|
|
@@ -156,7 +154,7 @@ if uploaded_file is not None:
|
|
| 156 |
ser_scores = audio_analysis_results.get('Speech Emotion Scores', {})
|
| 157 |
text_scores = audio_analysis_results.get('Text Emotion Scores', {})
|
| 158 |
|
| 159 |
-
# Create vectors
|
| 160 |
fer_vector = create_unified_vector(fer_avg_scores, FACIAL_TO_UNIFIED)
|
| 161 |
ser_vector = create_unified_vector(ser_scores, SER_TO_UNIFIED)
|
| 162 |
text_vector = create_unified_vector(text_scores, TEXT_TO_UNIFIED)
|
|
@@ -167,24 +165,35 @@ if uploaded_file is not None:
|
|
| 167 |
sim_speech_text = cosine_similarity([ser_vector], [text_vector])[0][0]
|
| 168 |
avg_similarity = np.mean([sim_face_text, sim_face_speech, sim_speech_text])
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
# Display metrics
|
| 171 |
col1, col2 = st.columns([1, 2])
|
| 172 |
with col1:
|
| 173 |
st.subheader("Multimodal Summary")
|
| 174 |
st.write(f"**Transcription:** \"{audio_analysis_results.get('Transcription', 'N/A')}\"")
|
| 175 |
-
st.metric("Dominant Facial Emotion",
|
| 176 |
-
st.metric("Dominant Text Emotion",
|
| 177 |
-
st.metric("Dominant Speech Emotion",
|
| 178 |
st.metric("Emotion Consistency", get_consistency_level(avg_similarity), f"{avg_similarity:.2f} Avg. Cosine Similarity")
|
| 179 |
|
| 180 |
with col2:
|
| 181 |
st.subheader("Facial Emotion Over Time")
|
| 182 |
if fer_timeline:
|
| 183 |
-
# Convert timeline to a DataFrame suitable for st.line_chart
|
| 184 |
df = pd.DataFrame(fer_timeline).T
|
| 185 |
-
# Filter for only the unified emotions we care about
|
| 186 |
-
|
| 187 |
-
|
|
|
|
| 188 |
else:
|
| 189 |
st.write("No faces detected to plot.")
|
| 190 |
|
|
|
|
| 26 |
st.write("Upload a short video clip (under 30 seconds) to see a multimodal emotion analysis.")
|
| 27 |
|
| 28 |
# --- Logger Configuration ---
|
|
|
|
| 29 |
logging.basicConfig(level=logging.INFO)
|
| 30 |
logging.getLogger('deepface').setLevel(logging.ERROR)
|
| 31 |
logging.getLogger('huggingface_hub').setLevel(logging.WARNING)
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
# --- Emotion Mappings ---
|
| 36 |
+
# This is the single source of truth for our final emotion space
|
| 37 |
+
UNIFIED_EMOTIONS = ['angry', 'happy', 'sad', 'neutral']
|
| 38 |
TEXT_TO_UNIFIED = {'neutral': 'neutral', 'joy': 'happy', 'sadness': 'sad', 'anger': 'angry'}
|
| 39 |
SER_TO_UNIFIED = {'neu': 'neutral', 'hap': 'happy', 'sad': 'sad', 'ang': 'angry'}
|
| 40 |
+
FACIAL_TO_UNIFIED = {'neutral': 'neutral', 'happy': 'happy', 'sad': 'sad', 'angry': 'angry', 'fear':None, 'surprise':None, 'disgust':None}
|
| 41 |
AUDIO_SAMPLE_RATE = 16000
|
| 42 |
|
| 43 |
# --- Model Loading ---
|
|
|
|
| 58 |
"""Creates a normalized vector from a dictionary of scores based on a mapping."""
|
| 59 |
vector = np.zeros(len(UNIFIED_EMOTIONS))
|
| 60 |
for label, score in scores_dict.items():
|
| 61 |
+
# Map the raw label (e.g., 'neu', 'joy') to our unified label ('neutral', 'happy')
|
| 62 |
unified_label = mapping_dict.get(label)
|
| 63 |
+
if unified_label in UNIFIED_EMOTIONS:
|
| 64 |
idx = UNIFIED_EMOTIONS.index(unified_label)
|
| 65 |
vector[idx] += score
|
| 66 |
|
|
|
|
| 67 |
norm = np.linalg.norm(vector)
|
| 68 |
if norm > 0:
|
| 69 |
vector /= norm
|
|
|
|
| 107 |
timestamp = frame_count / fps
|
| 108 |
analysis = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False, silent=True)
|
| 109 |
if isinstance(analysis, list) and len(analysis) > 0:
|
|
|
|
| 110 |
fer_timeline[timestamp] = analysis[0]['emotion']
|
| 111 |
frame_count += 1
|
| 112 |
finally:
|
|
|
|
| 122 |
video_clip.audio.write_audiofile(taudio.name, fps=AUDIO_SAMPLE_RATE, logger=None)
|
| 123 |
temp_audio_path = taudio.name
|
| 124 |
|
|
|
|
| 125 |
result = whisper_model.transcribe(temp_audio_path, fp16=False)
|
| 126 |
transcribed_text = result['text'].strip()
|
| 127 |
audio_analysis_results['Transcription'] = transcribed_text if transcribed_text else "No speech detected."
|
|
|
|
| 154 |
ser_scores = audio_analysis_results.get('Speech Emotion Scores', {})
|
| 155 |
text_scores = audio_analysis_results.get('Text Emotion Scores', {})
|
| 156 |
|
| 157 |
+
# Create vectors using the unified mappings. This ensures cosine similarity is correct.
|
| 158 |
fer_vector = create_unified_vector(fer_avg_scores, FACIAL_TO_UNIFIED)
|
| 159 |
ser_vector = create_unified_vector(ser_scores, SER_TO_UNIFIED)
|
| 160 |
text_vector = create_unified_vector(text_scores, TEXT_TO_UNIFIED)
|
|
|
|
| 165 |
sim_speech_text = cosine_similarity([ser_vector], [text_vector])[0][0]
|
| 166 |
avg_similarity = np.mean([sim_face_text, sim_face_speech, sim_speech_text])
|
| 167 |
|
| 168 |
+
# --- THIS IS THE FIX: Map dominant emotions to unified labels before displaying ---
|
| 169 |
+
dominant_fer = max(fer_avg_scores, key=fer_avg_scores.get) if fer_avg_scores else "N/A"
|
| 170 |
+
dominant_text_raw = max(text_scores, key=text_scores.get) if text_scores else "N/A"
|
| 171 |
+
dominant_ser_raw = max(ser_scores, key=ser_scores.get) if ser_scores else "N/A"
|
| 172 |
+
|
| 173 |
+
# Convert raw dominant emotions to their unified, full-word versions for display
|
| 174 |
+
display_fer = FACIAL_TO_UNIFIED.get(dominant_fer, "N/A").capitalize()
|
| 175 |
+
display_text = TEXT_TO_UNIFIED.get(dominant_text_raw, "N/A").capitalize()
|
| 176 |
+
display_ser = SER_TO_UNIFIED.get(dominant_ser_raw, "N/A").capitalize()
|
| 177 |
+
# ===================================================================================
|
| 178 |
+
|
| 179 |
# Display metrics
|
| 180 |
col1, col2 = st.columns([1, 2])
|
| 181 |
with col1:
|
| 182 |
st.subheader("Multimodal Summary")
|
| 183 |
st.write(f"**Transcription:** \"{audio_analysis_results.get('Transcription', 'N/A')}\"")
|
| 184 |
+
st.metric("Dominant Facial Emotion", display_fer)
|
| 185 |
+
st.metric("Dominant Text Emotion", display_text)
|
| 186 |
+
st.metric("Dominant Speech Emotion", display_ser)
|
| 187 |
st.metric("Emotion Consistency", get_consistency_level(avg_similarity), f"{avg_similarity:.2f} Avg. Cosine Similarity")
|
| 188 |
|
| 189 |
with col2:
|
| 190 |
st.subheader("Facial Emotion Over Time")
|
| 191 |
if fer_timeline:
|
|
|
|
| 192 |
df = pd.DataFrame(fer_timeline).T
|
| 193 |
+
# Filter for only the unified emotions we care about for the plot
|
| 194 |
+
plot_columns = [k for k, v in FACIAL_TO_UNIFIED.items() if v is not None]
|
| 195 |
+
df_filtered = df[plot_columns].rename(columns=FACIAL_TO_UNIFIED)
|
| 196 |
+
st.line_chart(df_filtered[UNIFIED_EMOTIONS]) # Ensure consistent column order
|
| 197 |
else:
|
| 198 |
st.write("No faces detected to plot.")
|
| 199 |
|