kitrofimov commited on
Commit
b4b9f1a
·
1 Parent(s): a95a3ae
Files changed (3) hide show
  1. README.md +1 -0
  2. app.py +26 -0
  3. requirements.txt +1 -0
README.md CHANGED
@@ -5,6 +5,7 @@ colorFrom: yellow
5
  colorTo: green
6
  sdk: gradio
7
  sdk_version: 5.45.0
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
5
  colorTo: green
6
  sdk: gradio
7
  sdk_version: 5.45.0
8
+ python_version: 3.12.11
9
  app_file: app.py
10
  pinned: false
11
  license: mit
app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ pipe = pipeline("text-classification", model="kitrofimov/news-classifier", top_k=3)
5
+
6
+ def classify(text):
7
+ preds = pipe(text)[0]
8
+ return {p["label"]: float(p["score"]) for p in preds}
9
+
10
+ with gr.Blocks() as demo:
11
+ gr.Markdown("# News Classifier")
12
+ gr.Markdown("Paste a news article below and see which category it belongs to! (one of \"world\", \"sports\", \"business\" and \"science / technology\"")
13
+ gr.Markdown("This model is based on a [`distilbert-base-uncased`](https://huggingface.co/distilbert/distilbert-base-uncased) architecture and was fine-tuned on the [AG News](https://huggingface.co/datasets/fancyzhx/ag_news) dataset for 3 epochs. Training code [here](https://colab.research.google.com/drive/1KTai0S1dzwIoS3Sba_jJG9ZNISRjSKGo)")
14
+
15
+ with gr.Row():
16
+ with gr.Column():
17
+ input = gr.Textbox(lines=5, placeholder="Enter your news article...")
18
+ classify_btn = gr.Button("Classify")
19
+ with gr.Column():
20
+ output = gr.Label(num_top_classes=3)
21
+
22
+ classify_btn.click(classify, inputs=input, outputs=output)
23
+
24
+ demo.launch()
25
+
26
+
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ transformers==4.56.1