Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, TFGPT2LMHeadModel | |
| review_model = TFGPT2LMHeadModel.from_pretrained("kmkarakaya/turkishReviews-ds") | |
| review_tokenizer = AutoTokenizer.from_pretrained("kmkarakaya/turkishReviews-ds") | |
| def generate_review(prompt): | |
| if prompt=="": | |
| prompt = " " | |
| input_ids = review_tokenizer.encode(prompt, return_tensors='tf') | |
| context_length = 40 | |
| output = review_model.generate( | |
| input_ids, | |
| do_sample=True, | |
| max_length=context_length, | |
| top_k=10, | |
| no_repeat_ngram_size=2, | |
| early_stopping=True | |
| ) | |
| return(review_tokenizer.decode(output[0], skip_special_tokens=True)) | |
| title="Turkish Review Generator: A GPT2 based Text Generator Trained with a Custom Dataset" | |
| description= """Generate a review in Turkish by providing a prompt or selecting an example prompt below. | |
| Generation takes <b>15-20 seconds</b> on average. | |
| Enjoy! | |
|  | |
| """ | |
| #<p>NOTE: Examples can sometimes generate ERROR. When you see ERROR on the screen <b>just click SUBMIT</b>. Model will generate text in 15-20 secs.</p> | |
| article = """<p style='text-align: center'>On YouTube:</p> | |
| <p style='text-align: center'><a href='https://youtube.com/playlist?list=PLQflnv_s49v9d9w-L0S8XUXXdNks7vPBL' target='_blank'>How to Train a Hugging Face Causal Language Model from Scratch with a Custom Dataset and a Custom Tokenizer?</a></p> | |
| <p style='text-align: center'><a href='https://youtube.com/playlist?list=PLQflnv_s49v8aajw6m9MRNbAAbL63flKD' target='_blank'>Hugging Face kütüphanesini kullanarak bir GPT2 Transformer Dil Modelini Kendi Veri Setimizle nasıl eğitip kullanabiliriz? (in Turkish)</a></p> | |
| <p style='text-align: center'>On Medium:</p> | |
| <p style='text-align: center'><a href='https://medium.com/deep-learning-with-keras/how-to-train-a-hugging-face-causal-language-model-from-scratch-8d08d038168f' target='_blank'>How to Train a Hugging Face Causal Language Model from Scratch with a Custom Dataset and a Custom Tokenizer?</a></p>""" | |
| examples=["Bir hafta önce aldığım cep telefonu çalışmıyor.", | |
| "Tatil için yaptığım rezervasyonu iptal edemiyorum.", | |
| "Geçen ay sipariş verdiğim ayakkabı gelmedi.", | |
| "Abone olduğum spor salonu kapandı.", | |
| "Buzdolabından garip sesler geliyor.", | |
| "Otel tam bir fiyasko."] | |
| demo = gr.Interface(fn=generate_review, | |
| inputs= gr.Textbox(lines=5, label="Prompt", placeholder="enter or select a prompt below..."), | |
| outputs= gr.Textbox(lines=5, label="Generated Review", placeholder="genereated review will be here..."), | |
| examples=examples, | |
| title=title, | |
| description= description, | |
| article = article, | |
| #cache_examples = False | |
| allow_flagging="manual", | |
| flagging_options=["good","moderate", "non-sense", ] | |
| #flagging_dir='./flags' | |
| ) | |
| demo.launch() |