kotlarmilos commited on
Commit
eb5ef66
·
verified ·
1 Parent(s): 8627371

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +892 -56
  2. requirements.txt +54 -1
app.py CHANGED
@@ -1,64 +1,900 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
 
 
 
 
 
 
 
 
 
60
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+
5
+ #!/usr/bin/env python3
6
+ # import gradio as gr
7
+
8
+ import json
9
+ import logging
10
+ import os
11
+ import traceback
12
+ from pathlib import Path
13
+ from urllib.parse import urlparse
14
+ from typing import Dict, Any, List, Set
15
+ from git import Repo
16
+ import io
17
+
18
+ import torch
19
+ import numpy as np
20
+ import faiss
21
+ from transformers import AutoTokenizer, AutoModelForCausalLM
22
+ from sentence_transformers import SentenceTransformer, util
23
+ from huggingface_hub import snapshot_download
24
+ import os
25
+ from openai import AzureOpenAI
26
+ import requests
27
+ import re
28
+
29
+ import matplotlib.pyplot as plt
30
+ from sklearn.manifold import TSNE
31
+ from sklearn.cluster import KMeans
32
+ import plotly.graph_objects as go
33
+ import plotly.express as px
34
+ import random
35
+
36
+ from sklearn.cluster import AgglomerativeClustering
37
+
38
+
39
+ def load_env():
40
+ from dotenv import load_dotenv
41
+ env_path = Path(__file__).parent.parent / '.env'
42
+ load_dotenv(dotenv_path=env_path)
43
+
44
+ load_env()
45
+
46
+ # Centralized env parameters
47
+ HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
48
+ GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
49
+ AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
50
+ AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
51
+ MODEL_NAME = "gpt-4o-mini"
52
+ DEPLOYMENT = "gpt-4o-mini"
53
+ API_VERSION = "2024-12-01-preview"
54
+
55
+ FILE_REGEX = re.compile(r"^diff --git a/(.+?) b/(.+)")
56
+ LINE_HUNK = re.compile(r"@@ -(?P<old_start>\d+),(?P<old_len>\d+) \+(?P<new_start>\d+),(?P<new_len>\d+) @@")
57
+
58
+ # Configure logging to capture all output
59
+ log_stream = io.StringIO()
60
+ log_handler = logging.StreamHandler(log_stream)
61
+ log_handler.setLevel(logging.INFO)
62
+ log_formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s")
63
+ log_handler.setFormatter(log_formatter)
64
+
65
+ logging.basicConfig(
66
+ level=logging.INFO,
67
+ format="%(asctime)s %(levelname)s %(message)s",
68
+ handlers=[log_handler, logging.StreamHandler()]
69
  )
70
+ logger = logging.getLogger(__name__)
71
+
72
+ class InferenceContext:
73
+ def __init__(self, repo_url: str):
74
+ self.repo_url = repo_url
75
+ owner, name = self._parse_owner_repo(repo_url)
76
+ self.repo_id = f"{owner}/{name}"
77
+ self.repo_dir = f"{owner}-{name}"
78
+ self.hf_repo_id = "kotlarmilos/repository-learning"
79
+
80
+ # Local paths for downloaded models
81
+ self.base = Path("artifacts") / self.repo_dir
82
+ self.model_dirs = {
83
+ 'fine_tune': self.base / 'fine_tune',
84
+ 'contrastive': self.base / 'contrastive',
85
+ 'index': self.base / 'index'
86
+ }
87
+ self.code_dir = self.base / 'code'
88
+
89
+ # Create directories
90
+ for d in (*self.model_dirs.values(), self.code_dir):
91
+ d.mkdir(parents=True, exist_ok=True)
92
+
93
+ @staticmethod
94
+ def _parse_owner_repo(url: str) -> tuple[str, str]:
95
+ parts = urlparse(url).path.strip("/").split("/")
96
+ if len(parts) < 2:
97
+ raise ValueError(f"Invalid GitHub URL: {url}")
98
+ return parts[-2], parts[-1]
99
+
100
+
101
+ class InferencePipeline:
102
+ def __init__(self, ctx: InferenceContext):
103
+ self.ctx = ctx
104
+ self.tokenizer = None
105
+ self.llm = None
106
+ self.embedder = None
107
+ self.faiss_index = None
108
+ self.faiss_metadata = None
109
+
110
+ self.download_artifacts()
111
+ self.load_models()
112
+
113
+ def download_artifacts(self):
114
+ """Download models and index from Hugging Face if they don't exist locally."""
115
+
116
+ self.repo_files = self._clone_or_pull()
117
+
118
+ snapshot_download(
119
+ repo_id=self.ctx.hf_repo_id,
120
+ allow_patterns=f"{self.ctx.repo_dir}/**",
121
+ local_dir=str(self.ctx.base.parent),
122
+ local_dir_use_symlinks=False,
123
+ token=HUGGINGFACE_HUB_TOKEN
124
+ )
125
+
126
+ logger.info("All artifacts download complete.")
127
+
128
+ def _clone_or_pull(self) -> bool:
129
+ dest = self.ctx.code_dir
130
+ git_dir = dest / ".git"
131
+ if git_dir.exists():
132
+ Repo(dest).remotes.origin.pull()
133
+ logger.info("Pulled latest code into %s", dest)
134
+ else:
135
+ Repo.clone_from(self.ctx.repo_url, dest)
136
+ logger.info("Cloned repo %s into %s", self.ctx.repo_url, dest)
137
+
138
+ return [str(f.relative_to(dest)) for f in dest.rglob("*") if f.is_file()]
139
+
140
+ def load_models(self):
141
+ """Load the fine-tuned LLM model."""
142
+ self.tokenizer = AutoTokenizer.from_pretrained(self.ctx.model_dirs['fine_tune'])
143
+ self.local_llm = AutoModelForCausalLM.from_pretrained(
144
+ self.ctx.model_dirs['fine_tune'],
145
+ device_map="auto",
146
+ torch_dtype=torch.bfloat16
147
+ )
148
+
149
+ self.enterprise_llm = AzureOpenAI(
150
+ api_version=API_VERSION,
151
+ azure_endpoint=AZURE_OPENAI_ENDPOINT,
152
+ api_key=AZURE_OPENAI_API_KEY,
153
+ )
154
+
155
+ self.embedder = SentenceTransformer(str(self.ctx.model_dirs['contrastive']))
156
+
157
+ self.faiss_index = faiss.read_index(str(self.ctx.model_dirs['index'] / "index.faiss"))
158
+ self.faiss_metadata = json.loads((self.ctx.model_dirs['index'] / "metadata.json").read_text())
159
+ logger.info("FAISS index loaded successfully")
160
+
161
+ def _extract_pr_data(self, pr_url: str) -> dict:
162
+ """
163
+ Collect PR data using GitHub API.
164
+ """
165
+
166
+ match = re.search(r'/pull/(\d+)', pr_url)
167
+ pr_number = int(match.group(1))
168
+
169
+ pr_url = f"https://api.github.com/repos/{self.ctx.repo_id}/pulls/{pr_number}"
170
+ comments_url = f"https://api.github.com/repos/{self.ctx.repo_id}/pulls/{pr_number}/comments"
171
+
172
+ headers = {}
173
+ headers["Authorization"] = f"token {GITHUB_TOKEN}"
174
+ headers["Accept"] = "application/vnd.github.v3+json"
175
+
176
+ try:
177
+ logger.info(f"Fetching PR #{pr_number} details...")
178
+ pr_response = requests.get(pr_url, headers=headers)
179
+ pr_response.raise_for_status()
180
+ pr_data = pr_response.json()
181
+
182
+ logger.info(f"Fetching PR #{pr_number} review comments...")
183
+ comments_response = requests.get(comments_url, headers=headers)
184
+ comments_response.raise_for_status()
185
+ comments_data = comments_response.json()
186
+
187
+ grouped = {}
188
+ for comment in comments_data:
189
+ hunk = comment.get("diff_hunk", "")
190
+ grouped.setdefault(hunk, []).append(comment.get("body", ""))
191
+
192
+ review_comments = [
193
+ {"diff_hunk": hunk, "comments": comments}
194
+ for hunk, comments in grouped.items()
195
+ ]
196
+
197
+ logger.info(f"Fetching PR #{pr_number} diff...")
198
+ diff_headers = headers.copy()
199
+ diff_headers["Accept"] = "application/vnd.github.v3.diff"
200
+ diff_response = requests.get(pr_url, headers=diff_headers)
201
+ diff_response.raise_for_status()
202
+
203
+ parsed_diff = self.parse_diff_with_lines(diff_response.text)
204
+
205
+ result = {
206
+ "title": pr_data.get("title", ""),
207
+ "body": pr_data.get("body", ""),
208
+ "review_comments": review_comments,
209
+ "diff": diff_response.text,
210
+ "changed_files": list(parsed_diff['changed_files']),
211
+ "diff_hunks": parsed_diff['diff_hunks']
212
+ }
213
+
214
+ logger.info(f"Successfully collected PR #{pr_number} data")
215
+ return result
216
+
217
+ except Exception as e:
218
+ logger.error(f"Error processing PR #{pr_number} data: {e}")
219
+ raise
220
+
221
+ def parse_diff_with_lines(self, diff_text: str) -> Dict[str, Any]:
222
+ lines = diff_text.splitlines()
223
+
224
+ result = {
225
+ 'changed_files': set(),
226
+ 'diff_hunks': {}
227
+ }
228
+
229
+ current_file = None
230
+ current_hunk_content = []
231
+ current_line_range = None
232
+ file_header_lines = []
233
+
234
+ for line in lines:
235
+ # Check if this is a new file header
236
+ file_match = FILE_REGEX.match(line)
237
+ if file_match:
238
+ # Save previous file data if exists
239
+ if current_file and current_hunk_content and current_line_range:
240
+ if current_file not in result['diff_hunks']:
241
+ result['diff_hunks'][current_file] = []
242
+ result['diff_hunks'][current_file].append({
243
+ 'line_range': current_line_range,
244
+ 'content': '\n'.join(current_hunk_content)
245
+ })
246
+
247
+ # Start new file
248
+ current_file = file_match.group(2) # Use the 'b/' file path (new file)
249
+ result['changed_files'].add(current_file)
250
+ file_header_lines = [line]
251
+ current_hunk_content = []
252
+ current_line_range = None
253
+
254
+ elif current_file: # Only process if we're inside a file
255
+ # Check for hunk headers to extract line ranges
256
+ hunk_match = LINE_HUNK.match(line)
257
+ if hunk_match:
258
+ # Save previous hunk if exists
259
+ if current_hunk_content and current_line_range:
260
+ if current_file not in result['diff_hunks']:
261
+ result['diff_hunks'][current_file] = []
262
+ result['diff_hunks'][current_file].append({
263
+ 'line_range': current_line_range,
264
+ 'content': '\n'.join(current_hunk_content)
265
+ })
266
+
267
+ # Start new hunk
268
+ old_start = int(hunk_match.group('old_start'))
269
+ old_len = int(hunk_match.group('old_len'))
270
+ new_start = int(hunk_match.group('new_start'))
271
+ new_len = int(hunk_match.group('new_len'))
272
+
273
+ # Calculate the range of changed lines
274
+ if new_len > 0:
275
+ line_start = new_start
276
+ line_end = new_start + new_len - 1
277
+ current_line_range = (line_start, line_end)
278
+ else:
279
+ current_line_range = (new_start, new_start)
280
+
281
+ # Start fresh hunk content with file headers and current hunk header
282
+ current_hunk_content = file_header_lines + [line]
283
+ else:
284
+ # Add content line to current hunk
285
+ if current_hunk_content is not None:
286
+ current_hunk_content.append(line)
287
+
288
+ # Save the last hunk data
289
+ if current_file and current_hunk_content and current_line_range:
290
+ if current_file not in result['diff_hunks']:
291
+ result['diff_hunks'][current_file] = []
292
+ result['diff_hunks'][current_file].append({
293
+ 'line_range': current_line_range,
294
+ 'content': '\n'.join(current_hunk_content)
295
+ })
296
+
297
+ return result
298
+
299
+
300
+ def analyze_file_similarity(self, changed_files: List[str]) -> Dict[str, Any]:
301
+ result = {
302
+ 'similar_file_groups': [],
303
+ 'anomalous_files': [],
304
+ 'analysis_summary': {
305
+ 'total_files': len(changed_files),
306
+ 'num_groups': 0,
307
+ 'num_anomalies': 0,
308
+ 'avg_group_size': 0
309
+ }
310
+ }
311
+
312
+ # Handle edge cases
313
+ if len(changed_files) == 0:
314
+ logger.info("No changed files to analyze")
315
+ return result
316
+
317
+ if len(changed_files) == 1:
318
+ logger.info(f"Only one file changed: {changed_files[0]} - no similarity analysis needed")
319
+ result['analysis_summary']['num_anomalies'] = 1
320
+ result['anomalous_files'].append({
321
+ 'file': changed_files[0],
322
+ 'reason': 'single_file',
323
+ 'max_similarity_to_others': 0.0,
324
+ 'most_similar_file': None,
325
+ 'is_anomaly': False
326
+ })
327
+ return result
328
+
329
+ # Encode all changed files
330
+ file_embeddings = self.embedder.encode(changed_files, convert_to_tensor=True)
331
+ similarity_matrix = util.pytorch_cos_sim(file_embeddings, file_embeddings)
332
+
333
+ # Convert similarity matrix to distance matrix for clustering
334
+ distance_matrix = 1 - similarity_matrix.cpu().numpy()
335
+
336
+ # Perform hierarchical clustering
337
+ clustering = AgglomerativeClustering(
338
+ n_clusters=None,
339
+ distance_threshold=0.3, # 1 - 0.7 = 0.3 (similarity threshold of 0.7)
340
+ metric='precomputed',
341
+ linkage='average'
342
+ )
343
+
344
+ cluster_labels = clustering.fit_predict(distance_matrix)
345
+
346
+ # Group files by cluster
347
+ clusters = {}
348
+ for i, label in enumerate(cluster_labels):
349
+ if label not in clusters:
350
+ clusters[label] = []
351
+ clusters[label].append((changed_files[i], i)) # Store file and its index
352
+
353
+ # Process clusters to identify groups and anomalies
354
+ for cluster_id, files_with_indices in clusters.items():
355
+ files_in_cluster = [f[0] for f in files_with_indices]
356
+
357
+ if len(files_in_cluster) > 1:
358
+ # This is a group of similar files
359
+ group_similarities = []
360
+ pairwise_similarities = []
361
+
362
+ for i in range(len(files_with_indices)):
363
+ for j in range(i+1, len(files_with_indices)):
364
+ file_i_idx = files_with_indices[i][1]
365
+ file_j_idx = files_with_indices[j][1]
366
+ similarity = float(similarity_matrix[file_i_idx][file_j_idx])
367
+ group_similarities.append(similarity)
368
+ pairwise_similarities.append({
369
+ 'file1': files_with_indices[i][0],
370
+ 'file2': files_with_indices[j][0],
371
+ 'similarity': similarity
372
+ })
373
+
374
+ avg_similarity = sum(group_similarities) / len(group_similarities) if group_similarities else 0
375
+ min_similarity = min(group_similarities) if group_similarities else 0
376
+ max_similarity = max(group_similarities) if group_similarities else 0
377
+
378
+ result['similar_file_groups'].append({
379
+ 'cluster_id': cluster_id,
380
+ 'files': files_in_cluster,
381
+ 'avg_similarity': avg_similarity,
382
+ 'min_similarity': min_similarity,
383
+ 'max_similarity': max_similarity,
384
+ 'pairwise_similarities': pairwise_similarities,
385
+ 'coherence': 'high' if min_similarity > 0.6 else 'medium' if min_similarity > 0.4 else 'low'
386
+ })
387
+ else:
388
+ # This is a singleton cluster - potentially anomalous
389
+ file = files_in_cluster[0]
390
+ file_idx = files_with_indices[0][1]
391
+
392
+ # Calculate maximum similarity to any other file
393
+ max_similarity = 0
394
+ most_similar_file = None
395
+ similarities_to_others = []
396
+
397
+ for other_idx, other_file in enumerate(changed_files):
398
+ if other_idx != file_idx:
399
+ similarity = float(similarity_matrix[file_idx][other_idx])
400
+ similarities_to_others.append({
401
+ 'file': other_file,
402
+ 'similarity': similarity
403
+ })
404
+ if similarity > max_similarity:
405
+ max_similarity = similarity
406
+ most_similar_file = other_file
407
+
408
+ result['anomalous_files'].append({
409
+ 'file': file,
410
+ 'cluster_id': cluster_id,
411
+ 'max_similarity_to_others': max_similarity,
412
+ 'most_similar_file': most_similar_file,
413
+ 'similarities_to_others': similarities_to_others,
414
+ 'is_anomaly': max_similarity < 0.5, # Strong anomaly threshold
415
+ 'anomaly_strength': 'strong' if max_similarity < 0.3 else 'medium' if max_similarity < 0.5 else 'weak',
416
+ 'reason': 'isolated_cluster'
417
+ })
418
+
419
+ # Additional anomaly detection: files that are far from the group average
420
+ if len(changed_files) >= 3:
421
+ # Calculate average embedding of all changed files
422
+ avg_embedding = torch.mean(file_embeddings, dim=0)
423
+
424
+ # Find files that are far from the average
425
+ for i, file in enumerate(changed_files):
426
+ file_embedding = file_embeddings[i]
427
+ similarity_to_avg = float(util.pytorch_cos_sim(file_embedding.unsqueeze(0), avg_embedding.unsqueeze(0))[0][0])
428
+
429
+ # Check if this file is already in anomalous_files
430
+ existing_anomaly = next((a for a in result['anomalous_files'] if a['file'] == file), None)
431
+
432
+ if existing_anomaly:
433
+ # Update existing anomaly record
434
+ existing_anomaly['similarity_to_group_avg'] = similarity_to_avg
435
+ existing_anomaly['is_strong_anomaly'] = (
436
+ similarity_to_avg < 0.4 and existing_anomaly['max_similarity_to_others'] < 0.5
437
+ )
438
+ if existing_anomaly['is_strong_anomaly']:
439
+ existing_anomaly['anomaly_strength'] = 'very_strong'
440
+ elif similarity_to_avg < 0.4: # Low similarity to group average
441
+ # Calculate similarities to all other files
442
+ similarities_to_others = []
443
+ max_sim = 0
444
+ most_sim_file = None
445
+
446
+ for j, other_file in enumerate(changed_files):
447
+ if i != j:
448
+ sim = float(similarity_matrix[i][j])
449
+ similarities_to_others.append({
450
+ 'file': other_file,
451
+ 'similarity': sim
452
+ })
453
+ if sim > max_sim:
454
+ max_sim = sim
455
+ most_sim_file = other_file
456
+
457
+ result['anomalous_files'].append({
458
+ 'file': file,
459
+ 'cluster_id': None,
460
+ 'max_similarity_to_others': max_sim,
461
+ 'most_similar_file': most_sim_file,
462
+ 'similarities_to_others': similarities_to_others,
463
+ 'similarity_to_group_avg': similarity_to_avg,
464
+ 'is_anomaly': True,
465
+ 'is_strong_anomaly': max_sim < 0.5,
466
+ 'anomaly_strength': 'very_strong' if max_sim < 0.3 else 'strong' if max_sim < 0.5 else 'medium',
467
+ 'reason': 'distant_from_group_average'
468
+ })
469
+
470
+ # Update analysis summary
471
+ result['analysis_summary']['num_groups'] = len(result['similar_file_groups'])
472
+ result['analysis_summary']['num_anomalies'] = len(result['anomalous_files'])
473
+
474
+ if result['similar_file_groups']:
475
+ total_files_in_groups = sum(len(group['files']) for group in result['similar_file_groups'])
476
+ result['analysis_summary']['avg_group_size'] = total_files_in_groups / len(result['similar_file_groups'])
477
+
478
+ # Log results
479
+ logger.info(f"File similarity analysis complete:")
480
+ logger.info(f" Total files: {result['analysis_summary']['total_files']}")
481
+ logger.info(f" Similar groups: {result['analysis_summary']['num_groups']}")
482
+ logger.info(f" Anomalous files: {result['analysis_summary']['num_anomalies']}")
483
+
484
+ for i, group in enumerate(result['similar_file_groups']):
485
+ logger.info(f" Group {i+1} ({group['coherence']} coherence): {group['files']} (avg: {group['avg_similarity']:.3f})")
486
+
487
+ for anomaly in result['anomalous_files']:
488
+ logger.info(f" {anomaly['anomaly_strength'].upper()} ANOMALY: {anomaly['file']} (reason: {anomaly['reason']}, max_sim: {anomaly['max_similarity_to_others']:.3f})")
489
+
490
+ return result
491
+
492
+ # TODO: Add local LLM reasoning
493
+ # def generate_llm_response(self, prompt: str, max_new_tokens: int = 256) -> str:
494
+ # """Generate response using the fine-tuned LLM."""
495
+ # if not self.tokenizer or not self.local_llm:
496
+ # raise ValueError("LLM not loaded. Call load_llm() first.")
497
+
498
+ # inputs = self.tokenizer(prompt, return_tensors="pt").to(self.local_llm.device)
499
+ # outputs = self.local_llm.generate(
500
+ # **inputs,
501
+ # max_new_tokens=max_new_tokens,
502
+ # pad_token_id=self.tokenizer.eos_token_id
503
+ # )
504
+ # return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
505
+
506
+ def search_code_snippets(self, diff_hunks) -> list:
507
+ metadata_file = self.ctx.model_dirs["index"] / "metadata.json"
508
+ with open(metadata_file, 'r', encoding='utf-8') as f:
509
+ metadata = json.load(f)
510
+
511
+ result = []
512
+
513
+ # Process each file's diff hunks
514
+ for file_path, hunks in diff_hunks.items():
515
+ logger.info(f"Searching functions for file: {file_path}")
516
+
517
+ for hunk in hunks:
518
+ line_range = hunk.get('line_range')
519
+ if not line_range:
520
+ continue
521
+
522
+ start_line, end_line = line_range
523
+ logger.debug(f"Processing hunk at lines {start_line}-{end_line}")
524
+
525
+ # Find functions that overlap with this line range
526
+ overlapping_functions = []
527
+
528
+ for func_metadata in metadata:
529
+ func_file = func_metadata.get('file', '')
530
+ func_start = func_metadata.get('start_line')
531
+ func_end = func_metadata.get('end_line')
532
+ func_name = func_metadata.get('name', 'unknown')
533
+ func_description = func_metadata.get('llm_description', '')
534
+
535
+ # Check if this function is in the same file
536
+ if func_file != file_path:
537
+ continue
538
+
539
+ # Check if function line range overlaps with diff hunk line range
540
+ if func_start is not None and func_end is not None:
541
+ # Check for overlap: function overlaps if it starts before diff ends
542
+ # and ends after diff starts
543
+ if func_start <= end_line and func_end >= start_line:
544
+ overlap_start = max(func_start, start_line)
545
+ overlap_end = min(func_end, end_line)
546
+
547
+ overlapping_functions.append({
548
+ 'function_name': func_name,
549
+ 'function_description': func_description,
550
+ 'function_start_line': func_start,
551
+ 'function_end_line': func_end,
552
+ # 'overlap_start': overlap_start,
553
+ # 'overlap_end': overlap_end,
554
+ # 'overlap_lines': overlap_end - overlap_start + 1
555
+ })
556
+
557
+ # if len(overlapping_functions) > 0:
558
+ hunk_result = {
559
+ 'file_name': file_path,
560
+ 'diff_hunk': hunk.get('content', ''),
561
+ 'overlapping_functions': overlapping_functions
562
+ }
563
+
564
+ result.append(hunk_result)
565
+
566
+ total_hunks = sum(len(hunks) for hunks in diff_hunks.values())
567
+ total_functions = sum(len(entry['overlapping_functions']) for entry in result)
568
+ logger.info(f"Processed {total_hunks} diff hunks across {len(diff_hunks)} files, found {total_functions} overlapping functions")
569
+
570
+ return result
571
+
572
+ def _select_files_around_changed(self, changed_files: List[str] = None, max_files: int = 500) -> List[str]:
573
+ """Select files to visualize, prioritizing changed files and semantically similar ones."""
574
+
575
+ logger.info(f"Selecting {max_files} files around {len(changed_files)} changed files...")
576
+
577
+ # Start with changed files
578
+ selected_files = set(changed_files)
579
+
580
+ # Find files similar to changed files using embeddings
581
+ try:
582
+ # Encode changed files
583
+ changed_embeddings = self.embedder.encode(changed_files, convert_to_tensor=False)
584
+
585
+ # Calculate target number of similar files to find
586
+ target_similar = min(max_files - len(changed_files), 200) # Leave room for random files
587
+
588
+ # Get a sample of repo files to compare against (for performance)
589
+ sample_size = min(2000, len(self.repo_files))
590
+ repo_sample = self.repo_files[:sample_size]
591
+
592
+ # Remove already selected files from sample
593
+ repo_sample = [f for f in repo_sample if f not in selected_files]
594
+
595
+ if len(repo_sample) > 0:
596
+ # Encode sample files
597
+ sample_embeddings = self.embedder.encode(repo_sample, convert_to_tensor=False, show_progress_bar=False)
598
+
599
+ # Calculate similarities
600
+ similarities = []
601
+ for i, repo_file in enumerate(repo_sample):
602
+ # Calculate max similarity to any changed file
603
+ max_sim = 0
604
+ for changed_emb in changed_embeddings:
605
+ sim = np.dot(changed_emb, sample_embeddings[i]) / (
606
+ np.linalg.norm(changed_emb) * np.linalg.norm(sample_embeddings[i])
607
+ )
608
+ max_sim = max(max_sim, sim)
609
+ # Only add if not already selected (avoid duplicates)
610
+ similarities.append((repo_file, max_sim))
611
+
612
+ # Sort by similarity and take top ones, avoiding duplicates
613
+ added = 0
614
+ for file_path, sim in sorted(similarities, key=lambda x: x[1], reverse=True):
615
+ if file_path not in selected_files:
616
+ selected_files.add(file_path)
617
+ added += 1
618
+ if len(selected_files) >= max_files or added >= target_similar:
619
+ break
620
+ logger.info(f"Added {len(similarities[:target_similar])} similar files to visualization")
621
+
622
+ except Exception as e:
623
+ logger.warning(f"Could not compute file similarities: {e}")
624
+
625
+ # Fill remaining slots with random files
626
+ remaining_slots = max_files - len(selected_files)
627
+ if remaining_slots > 0:
628
+ remaining_files = [f for f in self.repo_files if f not in selected_files]
629
+ random.shuffle(remaining_files)
630
+ for file_path in remaining_files[:remaining_slots]:
631
+ selected_files.add(file_path)
632
+
633
+ result = list(selected_files)
634
+ logger.info(f"Selected {len(result)} files total: {len(changed_files)} changed, {len(result) - len(changed_files)} related/random")
635
+ return result
636
+
637
+ def create_repo_visualization(self, changed_files: List[str] = None, max_files: int = 500):
638
+ files_to_plot = self._select_files_around_changed(changed_files, max_files * len(changed_files))
639
+ logger.info(f"Creating visualization for {len(files_to_plot)} files...")
640
+
641
+ if len(files_to_plot) < 2:
642
+ return self._create_dummy_plot(f"Only {len(files_to_plot)} files available")
643
+
644
+ embeddings = self.embedder.encode(files_to_plot, convert_to_tensor=False, show_progress_bar=False)
645
+ logger.info(f"Embeddings computed successfully: shape {getattr(embeddings, 'shape', None)}")
646
+
647
+ n = len(files_to_plot)
648
+ perplexity = min(30, max(1, n - 1))
649
+ tsne = TSNE(n_components=3, perplexity=perplexity, init='random', random_state=42)
650
+ reduced = tsne.fit_transform(embeddings)
651
+
652
+ fig = go.Figure()
653
+
654
+ colors = []
655
+ sizes = []
656
+ hover_texts = []
657
+
658
+ for i, file_path in enumerate(files_to_plot):
659
+ if changed_files and file_path in changed_files:
660
+ colors.append('red')
661
+ else:
662
+ # Color by file type
663
+ ext = os.path.splitext(file_path)[1].lower()
664
+ if ext in ['.py', '.js', '.ts', '.java', '.cpp', '.c', '.cs', '.rb', '.go', '.rs']:
665
+ colors.append('blue')
666
+ elif ext in ['.md', '.txt', '.rst', '.doc']:
667
+ colors.append('green')
668
+ elif ext in ['.json', '.yaml', '.yml', '.xml', '.toml', '.ini']:
669
+ colors.append('orange')
670
+ elif ext in ['.html', '.css', '.scss', '.sass']:
671
+ colors.append('purple')
672
+ else:
673
+ colors.append('gray')
674
+ sizes.append(8)
675
+ hover_texts.append(f"{os.path.basename(file_path)}")
676
+
677
+ fig.add_trace(go.Scatter3d(
678
+ x=reduced[:, 0].tolist(),
679
+ y=reduced[:, 1].tolist(),
680
+ z=reduced[:, 2].tolist(),
681
+ mode='markers+text',
682
+ marker=dict(size=sizes, color=colors),
683
+ text=[os.path.basename(f) for f in files_to_plot],
684
+ hovertext=hover_texts,
685
+ textposition='middle center',
686
+ name='Repository Files'
687
+ ))
688
+
689
+ title_text = 'Repository File Embeddings (3D t-SNE)'
690
+ if changed_files:
691
+ title_text += f' - {len(changed_files)} Changed Files Highlighted in Red'
692
+
693
+ fig.update_layout(
694
+ title=title_text,
695
+ scene=dict(
696
+ xaxis_title='t-SNE 1',
697
+ yaxis_title='t-SNE 2',
698
+ zaxis_title='t-SNE 3',
699
+ camera=dict(eye=dict(x=1.5, y=1.5, z=1.5))
700
+ ),
701
+ width=800,
702
+ height=600,
703
+ margin=dict(r=20, b=10, l=10, t=60)
704
+ )
705
+
706
+ return fig
707
+
708
+ def get_current_logs():
709
+ return log_stream.getvalue()
710
+
711
+ # Pipeline
712
+
713
+ pipeline = InferencePipeline(InferenceContext("https://github.com/dotnet/xharness"))
714
+
715
+ def analyze_pr_streaming(pr_url):
716
+ log_stream.seek(0)
717
+ log_stream.truncate()
718
+
719
+ response = {}
720
+ base_review = ""
721
+ final_review = ""
722
+ visualization = None
723
+
724
+ data = pipeline._extract_pr_data(pr_url)
725
+ yield base_review, final_review, get_current_logs(), visualization
726
+
727
+ visualization = pipeline.create_repo_visualization(list(data["changed_files"]), max_files=20)
728
+ yield "", "", get_current_logs(), visualization
729
+
730
+ similarity_analysis = pipeline.analyze_file_similarity(list(data["changed_files"]))
731
+ similar_file_groups = similarity_analysis['similar_file_groups']
732
+ anomalous_files = similarity_analysis['anomalous_files']
733
+ yield "", "", get_current_logs(), visualization
734
+
735
+ code_description = pipeline.search_code_snippets(data["diff_hunks"])
736
+
737
+ # Base prompt
738
+ base_prompt = f"""You are an expert code reviewer. Analyze the PR below and provide detailed feedback with specific line-by-line suggestions:
739
+ Provide a detailed code review including:
740
+ 1. **Code Quality Issues**: Point out specific lines with problems
741
+ 2. **Suggested Fixes**: Provide exact code suggestions with diff format
742
+ 3. **Security Concerns**: Highlight any security vulnerabilities
743
+ 4. **Performance Issues**: Identify potential performance problems
744
+ 5. **Best Practices**: Suggest improvements following coding standards
745
+ 6. **Testing Recommendations**: What tests should be added/modified
746
+
747
+ Format your suggestions like this for each issue:
748
+ **File: `filename.ext` Line X**
749
+ Problem: [description]
750
+ ```diff
751
+ - old code line
752
+ + suggested new code line
753
+ ```
754
+
755
+ TITLE: {data['title']}
756
+
757
+ DESCRIPTION: {data['body']}
758
+
759
+ CHANGED FILES: {', '.join(data['changed_files'])}
760
+ """
761
+
762
+ similar_file_groups_formatted = []
763
+ for i, group in enumerate(similar_file_groups):
764
+ files_str = ", ".join(group['files'])
765
+ similar_file_groups_formatted.append(f"group {i}: {files_str}")
766
+
767
+ anomalous_files_formatted = []
768
+ for anomaly in anomalous_files:
769
+ anomalous_files_formatted.append(f"anomaly: {anomaly['file']} (reason: {anomaly['reason']}, strength: {anomaly['anomaly_strength']})")
770
+
771
+ grounding_formatted = ""
772
+ for entry in code_description:
773
+ file_name = entry['file_name']
774
+ overlapping_functions = entry['overlapping_functions']
775
+ diff_hunk = entry['diff_hunk']
776
+
777
+ if len(overlapping_functions) > 0:
778
+ grounding_formatted += f"In file {file_name}, the following changes were made: {diff_hunk}\n"
779
+ grounding_formatted += f"These changes affected the following functions:\n"
780
+ for func in overlapping_functions:
781
+ grounding_formatted += f"{func['function_name']} - {func['function_description']}\n"
782
+ else:
783
+ grounding_formatted += f"In file {file_name}, the following changes were made: {diff_hunk}\n"
784
+
785
+ grounding_formatted += "\n"
786
+
787
+ # Create formatted strings for f-string
788
+ similar_groups_text = "\n".join(similar_file_groups_formatted)
789
+ anomalous_files_text = "\n".join(anomalous_files_formatted)
790
+
791
+
792
+ # TODO: Add local LLM reasoning
793
+ # TODO: Add relevant files from the directory not included
794
+ comprehensive_prompt = f"""{base_prompt}
795
+ FILES THAT ARE SEMANTICALLY CLOSE CHANGED IN THIS PR:
796
+ {similar_groups_text}
797
+
798
+ UNEXPECTED CHANGES IN FILES:
799
+ {anomalous_files_text}
800
+
801
+ GROUNDING DATA: The following provides specific information about which functions are affected by each diff hunk:
802
+ {grounding_formatted}
803
+ """
804
+
805
+ base_prompt += f"""
806
+ DIFF: {data['diff']}
807
+ """
808
+
809
+ logger.info(f"Base prompt word count: {len(base_prompt.split())}")
810
+ # logger.info(f"Base prompt: {base_prompt}")
811
+
812
+ logger.info(f"Comprehensive prompt word count: {len(comprehensive_prompt.split())}")
813
+ # logger.info(f"Comprehensive prompt: {comprehensive_prompt}")
814
+
815
+ logger.info("Calling Azure OpenAI...")
816
+ yield "", "", get_current_logs(), visualization
817
+
818
+ base_review_response = pipeline.enterprise_llm.chat.completions.create(
819
+ model=DEPLOYMENT,
820
+ messages=[
821
+ {"role": "system", "content": "You are an expert code reviewer. Provide thorough, constructive feedback."},
822
+ {"role": "user", "content": base_prompt}
823
+ ],
824
+ max_tokens=8192,
825
+ temperature=0.3
826
+ )
827
+
828
+ base_review = base_review_response.choices[0].message.content
829
+ logger.info("Base review completed")
830
+
831
+ final_review_response = pipeline.enterprise_llm.chat.completions.create(
832
+ model=DEPLOYMENT,
833
+ messages=[
834
+ {"role": "system", "content": "You are an expert code reviewer. Provide thorough, constructive feedback."},
835
+ {"role": "user", "content": comprehensive_prompt}
836
+ ],
837
+ max_tokens=8192,
838
+ temperature=0.3
839
+ )
840
+
841
+ final_review = final_review_response.choices[0].message.content
842
+ logger.info("Final review completed")
843
+
844
+ yield base_review, final_review, get_current_logs(), visualization
845
 
846
+ with gr.Blocks(title="PR Code Review Assistant") as demo:
847
+ gr.Markdown("# PR Code Review Assistant")
848
+ gr.Markdown("Enter a GitHub PR URL to get comprehensive code review analysis with interactive repository visualization.")
849
+
850
+ with gr.Row():
851
+ pr_url_input = gr.Textbox(
852
+ label="GitHub PR URL",
853
+ placeholder="https://github.com/owner/repo/pull/123",
854
+ value="https://github.com/dotnet/xharness/pull/1416"
855
+ )
856
+
857
+ analyze_btn = gr.Button("Analyze PR", variant="primary")
858
+
859
+ with gr.Row():
860
+ with gr.Column(scale=1):
861
+ base_review_output = gr.Textbox(
862
+ label="Base Review",
863
+ lines=15,
864
+ max_lines=30,
865
+ interactive=False
866
+ )
867
+
868
+ with gr.Column(scale=1):
869
+ final_review_output = gr.Textbox(
870
+ label="Comprehensive Review",
871
+ lines=15,
872
+ max_lines=30,
873
+ interactive=False
874
+ )
875
+
876
+ with gr.Row():
877
+ with gr.Column(scale=1):
878
+ visualization_output = gr.Plot(
879
+ label="Repository Files Visualization (3D)",
880
+ value=None
881
+ )
882
+
883
+ with gr.Column(scale=1):
884
+ logs_output = gr.Textbox(
885
+ label="Analysis Logs",
886
+ lines=15,
887
+ max_lines=25,
888
+ interactive=False,
889
+ show_copy_button=True
890
+ )
891
+
892
+ analyze_btn.click(
893
+ fn=analyze_pr_streaming,
894
+ inputs=[pr_url_input],
895
+ outputs=[base_review_output, final_review_output, logs_output, visualization_output],
896
+ show_progress=True
897
+ )
898
 
899
  if __name__ == "__main__":
900
  demo.launch()
requirements.txt CHANGED
@@ -1 +1,54 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Core ML dependencies
2
+ torch>=2.0.0
3
+ transformers>=4.30.0
4
+ sentence-transformers>=2.2.2
5
+ faiss-cpu>=1.7.4
6
+ numpy>=1.21.0
7
+
8
+ # Data processing
9
+ pandas>=1.5.0
10
+ datasets>=2.12.0
11
+ accelerate>=0.20.0
12
+ peft>=0.4.0
13
+ bitsandbytes>=0.39.0
14
+ huggingface_hub>=0.16.0
15
+
16
+ # GitHub integration
17
+ PyGithub
18
+ GitPython>=3.1.0
19
+ requests>=2.28.0
20
+ python-dotenv>=1.0.0
21
+ tenacity>=8.2.0
22
+
23
+ # Tree-sitter parsers
24
+ tree-sitter>=0.20.0
25
+ tree-sitter-python>=0.20.0
26
+ tree-sitter-c>=0.20.0
27
+ tree-sitter-cpp>=0.20.0
28
+ tree-sitter-java>=0.20.0
29
+ tree-sitter-c-sharp>=0.20.0
30
+ tree-sitter-javascript>=0.20.0
31
+
32
+ # Web interface
33
+ flask>=2.3.0
34
+ flask-session>=0.5.0
35
+
36
+ # Utilities
37
+ tqdm>=4.64.0
38
+ schedule>=1.2.0
39
+ openai
40
+
41
+ # Development
42
+ pytest>=7.0.0
43
+ black>=23.0.0
44
+ flake8>=6.0.0
45
+
46
+ # Transformers library for NLP tasks
47
+ transformers
48
+ matplotlib>=3.5.0
49
+ scikit-learn>=1.1.0
50
+ gradio>=4.0.0
51
+
52
+ # Visualization dependencies
53
+ plotly>=5.0.0
54
+ openai