Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import io
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
# Load the emotion classification model
|
| 8 |
+
@st.cache_resource
|
| 9 |
+
def load_model():
|
| 10 |
+
return pipeline(
|
| 11 |
+
"text-classification",
|
| 12 |
+
model="j-hartmann/emotion-english-distilroberta-base",
|
| 13 |
+
return_all_scores=True
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
emotion_classifier = load_model()
|
| 17 |
+
|
| 18 |
+
# Define a function to predict emotions and generate a bar chart
|
| 19 |
+
def predict_emotion_with_chart(text):
|
| 20 |
+
if not text.strip():
|
| 21 |
+
return None, None
|
| 22 |
+
|
| 23 |
+
# Get predictions
|
| 24 |
+
results = emotion_classifier(text)
|
| 25 |
+
emotions = {result['label']: round(result['score'], 2) for result in results[0]}
|
| 26 |
+
sorted_emotions = dict(sorted(emotions.items(), key=lambda item: item[1], reverse=True))
|
| 27 |
+
|
| 28 |
+
# Create a bar chart
|
| 29 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 30 |
+
ax.bar(sorted_emotions.keys(), sorted_emotions.values(), color="skyblue")
|
| 31 |
+
ax.set_title("Emotion Scores")
|
| 32 |
+
ax.set_ylabel("Confidence Score")
|
| 33 |
+
ax.set_ylim(0, 1)
|
| 34 |
+
ax.set_xticklabels(sorted_emotions.keys(), rotation=45, ha="right")
|
| 35 |
+
plt.tight_layout()
|
| 36 |
+
|
| 37 |
+
return sorted_emotions, fig
|
| 38 |
+
|
| 39 |
+
# Function to generate JSON result
|
| 40 |
+
def generate_json(text):
|
| 41 |
+
results = emotion_classifier(text)
|
| 42 |
+
emotions = {result['label']: round(result['score'], 2) for result in results[0]}
|
| 43 |
+
return json.dumps(emotions, indent=2)
|
| 44 |
+
|
| 45 |
+
# Streamlit UI
|
| 46 |
+
st.title("🌟 Enhanced Emotion Detection App")
|
| 47 |
+
st.markdown("Analyze the emotions in a sentence and visualize them. Enter text to detect emotions, see a bar chart of scores, and download the results as a JSON file.")
|
| 48 |
+
|
| 49 |
+
# Input text
|
| 50 |
+
text_input = st.text_area("Enter text to analyze emotions:", "")
|
| 51 |
+
|
| 52 |
+
if st.button("Analyze Emotions"):
|
| 53 |
+
if text_input.strip():
|
| 54 |
+
emotion_scores, chart = predict_emotion_with_chart(text_input)
|
| 55 |
+
if emotion_scores:
|
| 56 |
+
st.subheader("Emotion Scores")
|
| 57 |
+
st.json(emotion_scores)
|
| 58 |
+
st.subheader("Emotion Chart")
|
| 59 |
+
st.pyplot(chart)
|
| 60 |
+
else:
|
| 61 |
+
st.error("No emotions detected. Please enter a valid text.")
|
| 62 |
+
else:
|
| 63 |
+
st.warning("Please enter some text.")
|
| 64 |
+
|
| 65 |
+
# Download JSON results
|
| 66 |
+
if text_input.strip():
|
| 67 |
+
json_data = generate_json(text_input)
|
| 68 |
+
st.download_button(label="Download Results as JSON", data=json_data, file_name="emotion_results.json", mime="application/json")
|