Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
+
from IndicTransToolkit import IndicProcessor
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
# Define the model and tokenizer
|
| 7 |
+
model_name = "ai4bharat/indictrans2-indic-indic-1B"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
|
| 10 |
+
ip = IndicProcessor(inference=True)
|
| 11 |
+
|
| 12 |
+
# Define the language codes
|
| 13 |
+
LANGUAGES = {
|
| 14 |
+
"Assamese (asm_Beng)": "asm_Beng",
|
| 15 |
+
"Kashmiri (kas_Arab)": "kas_Arab",
|
| 16 |
+
"Punjabi (pan_Guru)": "pan_Guru",
|
| 17 |
+
"Bengali (ben_Beng)": "ben_Beng",
|
| 18 |
+
"Kashmiri (kas_Deva)": "kas_Deva",
|
| 19 |
+
"Sanskrit (san_Deva)": "san_Deva",
|
| 20 |
+
"Bodo (brx_Deva)": "brx_Deva",
|
| 21 |
+
"Maithili (mai_Deva)": "mai_Deva",
|
| 22 |
+
"Santali (sat_Olck)": "sat_Olck",
|
| 23 |
+
"Dogri (doi_Deva)": "doi_Deva",
|
| 24 |
+
"Malayalam (mal_Mlym)": "mal_Mlym",
|
| 25 |
+
"Sindhi (snd_Arab)": "snd_Arab",
|
| 26 |
+
"English (eng_Latn)": "eng_Latn",
|
| 27 |
+
"Marathi (mar_Deva)": "mar_Deva",
|
| 28 |
+
"Sindhi (snd_Deva)": "snd_Deva",
|
| 29 |
+
"Konkani (gom_Deva)": "gom_Deva",
|
| 30 |
+
"Manipuri (mni_Beng)": "mni_Beng",
|
| 31 |
+
"Tamil (tam_Taml)": "tam_Taml",
|
| 32 |
+
"Gujarati (guj_Gujr)": "guj_Gujr",
|
| 33 |
+
"Manipuri (mni_Mtei)": "mni_Mtei",
|
| 34 |
+
"Telugu (tel_Telu)": "tel_Telu",
|
| 35 |
+
"Hindi (hin_Deva)": "hin_Deva",
|
| 36 |
+
"Nepali (npi_Deva)": "npi_Deva",
|
| 37 |
+
"Urdu (urd_Arab)": "urd_Arab",
|
| 38 |
+
"Kannada (kan_Knda)": "kan_Knda",
|
| 39 |
+
"Odia (ory_Orya)": "ory_Orya",
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
# Define the translation function
|
| 43 |
+
def translate(text, src_lang, tgt_lang):
|
| 44 |
+
batch = ip.preprocess_batch([text], src_lang=src_lang, tgt_lang=tgt_lang)
|
| 45 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 46 |
+
inputs = tokenizer(batch, truncation=True, padding="longest", return_tensors="pt").to(DEVICE)
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
generated_tokens = model.generate(
|
| 49 |
+
**inputs,
|
| 50 |
+
use_cache=True,
|
| 51 |
+
min_length=0,
|
| 52 |
+
max_length=256,
|
| 53 |
+
num_beams=5,
|
| 54 |
+
num_return_sequences=1,
|
| 55 |
+
)
|
| 56 |
+
with tokenizer.as_target_tokenizer():
|
| 57 |
+
generated_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
| 58 |
+
return generated_text
|
| 59 |
+
|
| 60 |
+
# Create a Gradio interface
|
| 61 |
+
with gr.Blocks() as demo:
|
| 62 |
+
gr.Markdown("### Indic Translations")
|
| 63 |
+
input_text = gr.Textbox(label="Input Text", placeholder="Enter text to translate")
|
| 64 |
+
src_lang = gr.Dropdown(label="Source Language", choices=list(LANGUAGES.keys()))
|
| 65 |
+
tgt_lang = gr.Dropdown(label="Target Language", choices=list(LANGUAGES.keys()))
|
| 66 |
+
translate_button = gr.Button("Translate")
|
| 67 |
+
translation_output = gr.Textbox(label="Translation", interactive=False)
|
| 68 |
+
|
| 69 |
+
@translate_button.click
|
| 70 |
+
def on_translate(text, src_lang, tgt_lang):
|
| 71 |
+
translation = translate(text, LANGUAGES[src_lang], LANGUAGES[tgt_lang])
|
| 72 |
+
translation_output.value = translation
|
| 73 |
+
|
| 74 |
+
demo.launch()
|