|
|
import os |
|
|
import uuid |
|
|
import gradio as gr |
|
|
import spaces |
|
|
from clip_slider_pipeline import CLIPSliderFlux |
|
|
from diffusers import FluxPipeline, AutoencoderTiny |
|
|
import torch |
|
|
import numpy as np |
|
|
import cv2 |
|
|
from PIL import Image |
|
|
from diffusers.utils import load_image |
|
|
from diffusers.utils import export_to_video |
|
|
import random |
|
|
|
|
|
|
|
|
base_model = "black-forest-labs/FLUX.1-schnell" |
|
|
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") |
|
|
pipe = FluxPipeline.from_pretrained(base_model, |
|
|
vae=taef1, |
|
|
torch_dtype=torch.bfloat16) |
|
|
|
|
|
pipe.transformer.to(memory_format=torch.channels_last) |
|
|
|
|
|
|
|
|
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) |
|
|
|
|
|
MAX_SEED = 2**32-1 |
|
|
|
|
|
def save_images_with_unique_filenames(image_list, save_directory): |
|
|
if not os.path.exists(save_directory): |
|
|
os.makedirs(save_directory) |
|
|
|
|
|
paths = [] |
|
|
for image in image_list: |
|
|
unique_filename = f"{uuid.uuid4()}.png" |
|
|
file_path = os.path.join(save_directory, unique_filename) |
|
|
|
|
|
image.save(file_path) |
|
|
paths.append(file_path) |
|
|
|
|
|
return paths |
|
|
|
|
|
def convert_to_centered_scale(num): |
|
|
if num % 2 == 0: |
|
|
start = -(num // 2 - 1) |
|
|
end = num // 2 |
|
|
else: |
|
|
start = -(num // 2) |
|
|
end = num // 2 |
|
|
return tuple(range(start, end + 1)) |
|
|
|
|
|
@spaces.GPU(duration=65) |
|
|
def generate(prompt, |
|
|
concept_1, |
|
|
concept_2, |
|
|
scale, |
|
|
randomize_seed=True, |
|
|
seed=42, |
|
|
recalc_directions=True, |
|
|
iterations=200, |
|
|
steps=3, |
|
|
interm_steps=33, |
|
|
guidance_scale=3.5, |
|
|
x_concept_1="", x_concept_2="", |
|
|
avg_diff_x=None, |
|
|
total_images=[], |
|
|
progress=gr.Progress() |
|
|
): |
|
|
slider_x = [concept_2, concept_1] |
|
|
|
|
|
if randomize_seed: |
|
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: |
|
|
progress(0, desc="Calculating directions...") |
|
|
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) |
|
|
x_concept_1, x_concept_2 = slider_x[0], slider_x[1] |
|
|
|
|
|
images = [] |
|
|
high_scale = scale |
|
|
low_scale = -1 * scale |
|
|
for i in progress.tqdm(range(interm_steps), desc="Generating images"): |
|
|
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1) |
|
|
image = clip_slider.generate(prompt, |
|
|
width=768, |
|
|
height=768, |
|
|
guidance_scale=guidance_scale, |
|
|
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) |
|
|
images.append(image) |
|
|
canvas = Image.new('RGB', (256*interm_steps, 256)) |
|
|
for i, im in enumerate(images): |
|
|
canvas.paste(im.resize((256,256)), (256 * i, 0)) |
|
|
|
|
|
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" |
|
|
|
|
|
scale_total = convert_to_centered_scale(interm_steps) |
|
|
scale_min = scale_total[0] |
|
|
scale_max = scale_total[-1] |
|
|
scale_middle = scale_total.index(0) |
|
|
post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) |
|
|
avg_diff_x = avg_diff.cpu() |
|
|
|
|
|
return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, f"{uuid.uuid4()}.mp4", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed |
|
|
|
|
|
def update_pre_generated_images(slider_value, total_images): |
|
|
number_images = len(total_images) |
|
|
if(number_images > 0): |
|
|
scale_tuple = convert_to_centered_scale(number_images) |
|
|
return total_images[scale_tuple.index(slider_value)][0] |
|
|
else: |
|
|
return None |
|
|
|
|
|
def reset_recalc_directions(): |
|
|
return True |
|
|
|
|
|
|
|
|
intro = """ |
|
|
<div style="display: flex;align-items: center;justify-content: center"> |
|
|
<img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="120" style="display: inline-block"> |
|
|
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block;font-size:2.25em">Latent Navigation</h1> |
|
|
</div> |
|
|
<div style="display: flex;align-items: center;justify-content: center"> |
|
|
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell 🪐</h3> |
|
|
</div> |
|
|
<p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block"> |
|
|
<a href="https://github.com/linoytsaban/semantic-sliders" target="_blank">Semantic Sliders repo</a> |
|
|
| |
|
|
<a href="https://www.ethansmith2000.com/post/traversing-through-clip-space-pca-and-latent-directions" target="_blank">based on Ethan Smith's CLIP directions</a> |
|
|
| |
|
|
<a href="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux?duplicate=true" target="_blank" style=" |
|
|
display: inline-block; |
|
|
"> |
|
|
<img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a> |
|
|
</p> |
|
|
""" |
|
|
css=''' |
|
|
#strip, #video{max-height: 256px; min-height: 80px} |
|
|
#video .empty{min-height: 80px} |
|
|
#strip img{object-fit: cover} |
|
|
.gradio-container{max-width: 960px !important} |
|
|
''' |
|
|
examples = [["a dog in the park", "winter", "summer", 1.5], ["a house", "USA suburb", "Europe", 2.5], ["a tomato", "rotten", "super fresh", 2.5]] |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
gr.HTML(intro) |
|
|
|
|
|
x_concept_1 = gr.State("") |
|
|
x_concept_2 = gr.State("") |
|
|
total_images = gr.Gallery(visible=False) |
|
|
|
|
|
avg_diff_x = gr.State() |
|
|
|
|
|
recalc_directions = gr.State(False) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
with gr.Group(): |
|
|
prompt = gr.Textbox(label="Prompt", info="Describe what to be steered by the directions", placeholder="A dog in the park") |
|
|
with gr.Row(): |
|
|
concept_1 = gr.Textbox(label="1st direction to steer", info="Starting state", placeholder="winter") |
|
|
concept_2 = gr.Textbox(label="2nd direction to steer", info="Finishing state", placeholder="summer") |
|
|
x = gr.Slider(minimum=0, value=1.75, step=0.1, maximum=4.0, label="Strength", info="maximum strength on each direction (unstable beyond 2.5)") |
|
|
submit = gr.Button("Generate directions") |
|
|
with gr.Column(): |
|
|
with gr.Group(elem_id="group"): |
|
|
post_generation_image = gr.Image(label="Generated Images", type="filepath", elem_id="interactive") |
|
|
post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="From 1st to 2nd direction") |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=4): |
|
|
image_seq = gr.Image(label="Strip", elem_id="strip", height=80) |
|
|
with gr.Column(scale=2, min_width=100): |
|
|
output_image = gr.Video(label="Looping video", elem_id="video", loop=True, autoplay=True) |
|
|
with gr.Accordion(label="Advanced options", open=False): |
|
|
interm_steps = gr.Slider(label = "Num of intermediate images", minimum=3, value=7, maximum=65, step=2) |
|
|
with gr.Row(): |
|
|
iterations = gr.Slider(label = "Num iterations for clip directions", minimum=0, value=200, maximum=400, step=1) |
|
|
steps = gr.Slider(label = "Num inference steps", minimum=1, value=3, maximum=4, step=1) |
|
|
with gr.Row(): |
|
|
guidance_scale = gr.Slider( |
|
|
label="Guidance scale", |
|
|
minimum=0.1, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=3.5, |
|
|
) |
|
|
with gr.Column(): |
|
|
randomize_seed = gr.Checkbox(True, label="Randomize seed") |
|
|
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", interactive=True, randomize=True) |
|
|
|
|
|
examples_gradio = gr.Examples( |
|
|
examples=examples, |
|
|
inputs=[prompt, concept_1, concept_2, x], |
|
|
fn=generate, |
|
|
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed], |
|
|
cache_examples="lazy" |
|
|
) |
|
|
|
|
|
submit.click( |
|
|
fn=generate, |
|
|
inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images], |
|
|
outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed] |
|
|
) |
|
|
iterations.change( |
|
|
fn=reset_recalc_directions, |
|
|
outputs=[recalc_directions] |
|
|
) |
|
|
seed.change( |
|
|
fn=reset_recalc_directions, |
|
|
outputs=[recalc_directions] |
|
|
) |
|
|
post_generation_slider.change( |
|
|
fn=update_pre_generated_images, |
|
|
inputs=[post_generation_slider, total_images], |
|
|
outputs=[post_generation_image], |
|
|
queue=False, |
|
|
show_progress="hidden", |
|
|
concurrency_limit=None |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |