Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import uuid | |
| import gradio as gr | |
| import spaces | |
| from clip_slider_pipeline import CLIPSliderFlux | |
| from diffusers import FluxPipeline, AutoencoderTiny | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| from PIL import Image | |
| from diffusers.utils import load_image | |
| from diffusers.utils import export_to_video | |
| import random | |
| # load pipelines | |
| base_model = "black-forest-labs/FLUX.1-schnell" | |
| taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") | |
| pipe = FluxPipeline.from_pretrained(base_model, | |
| vae=taef1, | |
| torch_dtype=torch.bfloat16) | |
| pipe.transformer.to(memory_format=torch.channels_last) | |
| #pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
| # pipe.enable_model_cpu_offload() | |
| clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) | |
| MAX_SEED = 2**32-1 | |
| def save_images_with_unique_filenames(image_list, save_directory): | |
| if not os.path.exists(save_directory): | |
| os.makedirs(save_directory) | |
| paths = [] | |
| for image in image_list: | |
| unique_filename = f"{uuid.uuid4()}.png" | |
| file_path = os.path.join(save_directory, unique_filename) | |
| image.save(file_path) | |
| paths.append(file_path) | |
| return paths | |
| def convert_to_centered_scale(num): | |
| if num % 2 == 0: # even | |
| start = -(num // 2 - 1) | |
| end = num // 2 | |
| else: # odd | |
| start = -(num // 2) | |
| end = num // 2 | |
| return tuple(range(start, end + 1)) | |
| def generate(prompt, | |
| concept_1, | |
| concept_2, | |
| scale, | |
| randomize_seed=True, | |
| seed=42, | |
| recalc_directions=True, | |
| iterations=200, | |
| steps=3, | |
| interm_steps=33, | |
| guidance_scale=3.5, | |
| use_slerp=True, | |
| x_concept_1="", x_concept_2="", | |
| avg_diff_x=None, | |
| total_images=[], | |
| progress=gr.Progress() | |
| ): | |
| print(f"Prompt: {prompt}, ← {concept_2}, {concept_1} ➡️ . scale {scale}, interm steps {interm_steps}") | |
| slider_x = [concept_2, concept_1] | |
| # check if avg diff for directions need to be re-calculated | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: | |
| progress(0, desc="Calculating directions...") | |
| avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) | |
| x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
| images = [] | |
| high_scale = scale | |
| low_scale = -1 * scale | |
| counter = 0 | |
| for i in progress.tqdm(range(interm_steps), desc="Generating images"): | |
| print(f"The value of i is: {counter}") | |
| print(f"The value of low_scale is: {low_scale}") | |
| print(f"The value of high_scale is: {high_scale}") | |
| print(f"The value of interm_steps is: {interm_steps}") | |
| cur_scale = low_scale + (high_scale - low_scale) * counter / (interm_steps - 1) | |
| image = clip_slider.generate(prompt, | |
| width=768, | |
| height=768, | |
| guidance_scale=guidance_scale, | |
| scale=cur_scale, | |
| seed=seed, | |
| num_inference_steps=steps, | |
| avg_diff=avg_diff, | |
| use_slerp=use_slerp, | |
| max_strength_for_slerp_endpoint=scale) | |
| images.append(image) | |
| #hack for cache examples | |
| counter+=1 | |
| if counter == interm_steps: | |
| break | |
| canvas = Image.new('RGB', (256*interm_steps, 256)) | |
| for i, im in enumerate(images): | |
| canvas.paste(im.resize((256,256)), (256 * i, 0)) | |
| comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" | |
| scale_total = convert_to_centered_scale(interm_steps) | |
| scale_min = scale_total[0] | |
| scale_max = scale_total[-1] | |
| scale_middle = scale_total.index(0) | |
| post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) | |
| avg_diff_x = avg_diff.cpu() | |
| video_path = f"{uuid.uuid4()}.mp4" | |
| print(video_path) | |
| return x_concept_1,x_concept_2, avg_diff_x, export_to_video(images, video_path, fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed | |
| def update_pre_generated_images(slider_value, total_images): | |
| number_images = len(total_images) | |
| if(number_images > 0): | |
| scale_tuple = convert_to_centered_scale(number_images) | |
| return total_images[scale_tuple.index(slider_value)][0] | |
| else: | |
| return None | |
| def reset_recalc_directions(): | |
| return True | |
| intro = """ | |
| <div style="display: flex;align-items: center;justify-content: center"> | |
| <img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="120" style="display: inline-block"> | |
| <h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block;font-size:2.25em">Latent Navigation</h1> | |
| </div> | |
| <div style="display: flex;align-items: center;justify-content: center"> | |
| <h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell 🪐</h3> | |
| </div> | |
| <p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block"> | |
| <a href="https://github.com/linoytsaban/semantic-sliders" target="_blank">Semantic Sliders repo</a> | |
| | | |
| <a href="https://www.ethansmith2000.com/post/traversing-through-clip-space-pca-and-latent-directions" target="_blank">based on Ethan Smith's CLIP directions</a> | |
| | | |
| <a href="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux?duplicate=true" target="_blank" style=" | |
| display: inline-block; | |
| "> | |
| <img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a> | |
| </p> | |
| """ | |
| css=''' | |
| #strip, #video{max-height: 256px; min-height: 80px} | |
| #video .empty{min-height: 80px} | |
| #strip img{object-fit: cover} | |
| .gradio-container{max-width: 960px !important; margin: 0 auto;} | |
| ''' | |
| examples = [["a dog in the park", "winter", "summer", 1.5], ["a house", "USA suburb", "Europe", 2.5], ["a tomato", "rotten", "super fresh", 2.5], ["a phone", "from the past", "from the future", 2.5]] | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML(intro) | |
| x_concept_1 = gr.State("") | |
| x_concept_2 = gr.State("") | |
| total_images = gr.Gallery(visible=False) | |
| avg_diff_x = gr.State() | |
| recalc_directions = gr.State(False) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Group(): | |
| prompt = gr.Textbox(label="Prompt", info="Describe what to be steered by the directions", placeholder="A dog in the park") | |
| with gr.Row(): | |
| concept_1 = gr.Textbox(label="1st direction to steer", info="Starting state", placeholder="winter") | |
| concept_2 = gr.Textbox(label="2nd direction to steer", info="Finishing state", placeholder="summer") | |
| x = gr.Slider(minimum=0, value=1.75, step=0.1, maximum=4.0, label="Strength", info="maximum strength on each direction (unstable beyond 2.5)") | |
| submit = gr.Button("Generate directions") | |
| with gr.Column(): | |
| with gr.Group(elem_id="group"): | |
| post_generation_image = gr.Image(label="Generated Images", type="filepath", elem_id="interactive") | |
| post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="From 1st to 2nd direction") | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| image_seq = gr.Image(label="Strip", elem_id="strip", height=80) | |
| with gr.Column(scale=2, min_width=100): | |
| output_image = gr.Video(label="Looping video", elem_id="video", loop=True, autoplay=True) | |
| with gr.Accordion(label="Advanced options", open=False): | |
| interm_steps = gr.Slider(label = "Num of intermediate images", minimum=3, value=7, maximum=65, step=2) | |
| with gr.Row(): | |
| iterations = gr.Slider(label = "Num iterations for clip directions", minimum=0, value=200, maximum=400, step=1) | |
| steps = gr.Slider(label = "Num inference steps", minimum=1, value=3, maximum=4, step=1) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.1, | |
| maximum=10.0, | |
| step=0.1, | |
| value=3.5, | |
| ) | |
| with gr.Column(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", interactive=True, randomize=True) | |
| use_slerp_checkbox = gr.Checkbox(label="Use Spherical Linear Interpolation (Slerp)", value=True) | |
| examples_gradio = gr.Examples( | |
| examples=examples, | |
| inputs=[prompt, concept_1, concept_2, x], | |
| fn=generate, | |
| outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed], | |
| cache_examples=True | |
| ) | |
| submit.click( | |
| fn=generate, | |
| inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, use_slerp_checkbox, x_concept_1, x_concept_2, avg_diff_x, total_images], | |
| outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed] | |
| ) | |
| iterations.change( | |
| fn=reset_recalc_directions, | |
| outputs=[recalc_directions] | |
| ) | |
| seed.change( | |
| fn=reset_recalc_directions, | |
| outputs=[recalc_directions] | |
| ) | |
| post_generation_slider.change( | |
| fn=update_pre_generated_images, | |
| inputs=[post_generation_slider, total_images], | |
| outputs=[post_generation_image], | |
| queue=False, | |
| show_progress="hidden", | |
| concurrency_limit=None | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |