Spaces:
Running
Running
Update src/streamlit_app.py (#3)
Browse files- Update src/streamlit_app.py (d4421a9a8339431aa6a7eb00b0e30fa79e4f89c6)
Co-authored-by: Amy Liu <amyliiu@users.noreply.huggingface.co>
- src/streamlit_app.py +12 -11
src/streamlit_app.py
CHANGED
|
@@ -17,13 +17,9 @@ def encode_image(image):
|
|
| 17 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 18 |
|
| 19 |
# Display logo
|
| 20 |
-
# buffered = BytesIO()
|
| 21 |
-
# logo_image.save(buffered, format="PNG")
|
| 22 |
-
# img_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 23 |
img_logo = encode_image(logo_small)
|
| 24 |
img_data = encode_image(logo_image)
|
| 25 |
|
| 26 |
-
# <div class="logo-container" style="display:flex; justify-content: center;">
|
| 27 |
st.markdown(
|
| 28 |
f"""
|
| 29 |
<div class="logo-container" style="display:flex; justify-content: center; align-items: center; gap: 20px;">
|
|
@@ -49,6 +45,7 @@ st.markdown(
|
|
| 49 |
''',
|
| 50 |
unsafe_allow_html=True
|
| 51 |
)
|
|
|
|
| 52 |
# βββ Load data ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 53 |
@st.cache_data
|
| 54 |
def load_data(path):
|
|
@@ -64,7 +61,6 @@ def load_data(path):
|
|
| 64 |
|
| 65 |
# one page description
|
| 66 |
st.markdown("## π Leaderboard")
|
| 67 |
-
# st.markdown("**Leaderboard:** higher scores shaded green; best models bolded.")
|
| 68 |
|
| 69 |
tiers = ['F1', 'Accuracy']
|
| 70 |
selected_tier = st.selectbox('Select metric:', tiers)
|
|
@@ -91,12 +87,15 @@ if selected_tier == 'F1':
|
|
| 91 |
else:
|
| 92 |
rank = int(row[f"{col}_rank"])
|
| 93 |
norm = 1 - (rank - 1) / ((max_ranks[col] - 1) or 1)
|
| 94 |
-
# interpolate green (182,243,182) β white
|
| 95 |
r = int(255 - norm*(255-182))
|
| 96 |
g = int(255 - norm*(255-243))
|
| 97 |
b = 255
|
| 98 |
bold = "font-weight:bold;" if rank == 1 else ""
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
| 100 |
html += f"<td style='{style}'>{val}</td>"
|
| 101 |
html += "</tr>"
|
| 102 |
html += "</table>"
|
|
@@ -107,6 +106,7 @@ else:
|
|
| 107 |
# Precompute max ranks for color scaling
|
| 108 |
score_cols = [f"T{i}" for i in range(1, 12)] + ["Avg"]
|
| 109 |
max_ranks = {col: df2[f"{col}_rank"].max() for col in score_cols}
|
|
|
|
| 110 |
# Build raw HTML table
|
| 111 |
cols = ["Model"] + [f"T{i}" for i in range(1,12)] + ["Avg"]
|
| 112 |
html = "<table style='border-collapse:collapse; width:100%; font-size:14px;'>"
|
|
@@ -123,12 +123,15 @@ else:
|
|
| 123 |
else:
|
| 124 |
rank = int(row[f"{col}_rank"])
|
| 125 |
norm = 1 - (rank - 1) / ((max_ranks[col] - 1) or 1)
|
| 126 |
-
# interpolate green (182,243,182) β white
|
| 127 |
r = int(255 - norm*(255-182))
|
| 128 |
g = int(255 - norm*(255-243))
|
| 129 |
b = 255
|
| 130 |
bold = "font-weight:bold;" if rank == 1 else ""
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
| 132 |
html += f"<td style='{style}'>{val}</td>"
|
| 133 |
html += "</tr>"
|
| 134 |
html += "</table>"
|
|
@@ -136,8 +139,6 @@ else:
|
|
| 136 |
|
| 137 |
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
pipeline_image = Image.open("src/pipeline.png")
|
| 142 |
buffered2 = BytesIO()
|
| 143 |
pipeline_image.save(buffered2, format="PNG")
|
|
|
|
| 17 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 18 |
|
| 19 |
# Display logo
|
|
|
|
|
|
|
|
|
|
| 20 |
img_logo = encode_image(logo_small)
|
| 21 |
img_data = encode_image(logo_image)
|
| 22 |
|
|
|
|
| 23 |
st.markdown(
|
| 24 |
f"""
|
| 25 |
<div class="logo-container" style="display:flex; justify-content: center; align-items: center; gap: 20px;">
|
|
|
|
| 45 |
''',
|
| 46 |
unsafe_allow_html=True
|
| 47 |
)
|
| 48 |
+
|
| 49 |
# βββ Load data ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 50 |
@st.cache_data
|
| 51 |
def load_data(path):
|
|
|
|
| 61 |
|
| 62 |
# one page description
|
| 63 |
st.markdown("## π Leaderboard")
|
|
|
|
| 64 |
|
| 65 |
tiers = ['F1', 'Accuracy']
|
| 66 |
selected_tier = st.selectbox('Select metric:', tiers)
|
|
|
|
| 87 |
else:
|
| 88 |
rank = int(row[f"{col}_rank"])
|
| 89 |
norm = 1 - (rank - 1) / ((max_ranks[col] - 1) or 1)
|
| 90 |
+
# interpolate green (182,243,182) β white/transparent for better contrast
|
| 91 |
r = int(255 - norm*(255-182))
|
| 92 |
g = int(255 - norm*(255-243))
|
| 93 |
b = 255
|
| 94 |
bold = "font-weight:bold;" if rank == 1 else ""
|
| 95 |
+
|
| 96 |
+
# Use dark text color for better contrast against light green backgrounds
|
| 97 |
+
text_color = "#000" if norm > 0.5 else "var(--text-color, #000)"
|
| 98 |
+
style = f"background-color:rgba({r},{g},{b},0.8); padding:6px; {bold} color:{text_color}; border: 1px solid #444;"
|
| 99 |
html += f"<td style='{style}'>{val}</td>"
|
| 100 |
html += "</tr>"
|
| 101 |
html += "</table>"
|
|
|
|
| 106 |
# Precompute max ranks for color scaling
|
| 107 |
score_cols = [f"T{i}" for i in range(1, 12)] + ["Avg"]
|
| 108 |
max_ranks = {col: df2[f"{col}_rank"].max() for col in score_cols}
|
| 109 |
+
|
| 110 |
# Build raw HTML table
|
| 111 |
cols = ["Model"] + [f"T{i}" for i in range(1,12)] + ["Avg"]
|
| 112 |
html = "<table style='border-collapse:collapse; width:100%; font-size:14px;'>"
|
|
|
|
| 123 |
else:
|
| 124 |
rank = int(row[f"{col}_rank"])
|
| 125 |
norm = 1 - (rank - 1) / ((max_ranks[col] - 1) or 1)
|
| 126 |
+
# interpolate green (182,243,182) β white/transparent for better contrast
|
| 127 |
r = int(255 - norm*(255-182))
|
| 128 |
g = int(255 - norm*(255-243))
|
| 129 |
b = 255
|
| 130 |
bold = "font-weight:bold;" if rank == 1 else ""
|
| 131 |
+
|
| 132 |
+
# Use dark text color for better contrast against light green backgrounds
|
| 133 |
+
text_color = "#000" if norm > 0.5 else "var(--text-color, #000)"
|
| 134 |
+
style = f"background-color:rgba({r},{g},{b},0.8); padding:6px; {bold} color:{text_color}; border: 1px solid #444;"
|
| 135 |
html += f"<td style='{style}'>{val}</td>"
|
| 136 |
html += "</tr>"
|
| 137 |
html += "</table>"
|
|
|
|
| 139 |
|
| 140 |
|
| 141 |
|
|
|
|
|
|
|
| 142 |
pipeline_image = Image.open("src/pipeline.png")
|
| 143 |
buffered2 = BytesIO()
|
| 144 |
pipeline_image.save(buffered2, format="PNG")
|