Spaces:
Running
Running
working interface
Browse files- src/helpers/generator.py +7 -7
- src/interfaces/feature_interface.py +48 -12
src/helpers/generator.py
CHANGED
|
@@ -20,6 +20,7 @@ class OutputGenerator:
|
|
| 20 |
self.wrapper = wrapper
|
| 21 |
self.lens = ActivationLens(module_exp=module_exp)
|
| 22 |
|
|
|
|
| 23 |
def generate(
|
| 24 |
self,
|
| 25 |
root_fen: Optional[str] = None,
|
|
@@ -35,17 +36,16 @@ class OutputGenerator:
|
|
| 35 |
input_encoding = InputEncoding.INPUT_CLASSICAL_112_PLANE_REPEATED
|
| 36 |
else:
|
| 37 |
raise ValueError
|
| 38 |
-
iter_boards = iter([[root_board, traj_board]])
|
| 39 |
-
|
| 40 |
iter_boards,
|
| 41 |
self.wrapper,
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
"
|
| 45 |
-
"input_encoding": input_encoding,
|
| 46 |
-
}
|
| 47 |
}
|
| 48 |
)
|
|
|
|
| 49 |
if len(act_dict) == 0:
|
| 50 |
raise ValueError("No module matced the given expression.")
|
| 51 |
elif len(act_dict) > 1:
|
|
|
|
| 20 |
self.wrapper = wrapper
|
| 21 |
self.lens = ActivationLens(module_exp=module_exp)
|
| 22 |
|
| 23 |
+
@torch.no_grad
|
| 24 |
def generate(
|
| 25 |
self,
|
| 26 |
root_fen: Optional[str] = None,
|
|
|
|
| 36 |
input_encoding = InputEncoding.INPUT_CLASSICAL_112_PLANE_REPEATED
|
| 37 |
else:
|
| 38 |
raise ValueError
|
| 39 |
+
iter_boards = iter([([root_board, traj_board],)])
|
| 40 |
+
result_iter = self.lens.analyse_batched_boards(
|
| 41 |
iter_boards,
|
| 42 |
self.wrapper,
|
| 43 |
+
return_output=True,
|
| 44 |
+
wrapper_kwargs={
|
| 45 |
+
"input_encoding": input_encoding,
|
|
|
|
|
|
|
| 46 |
}
|
| 47 |
)
|
| 48 |
+
act_dict, (model_output,) = next(result_iter)
|
| 49 |
if len(act_dict) == 0:
|
| 50 |
raise ValueError("No module matced the given expression.")
|
| 51 |
elif len(act_dict) > 1:
|
src/interfaces/feature_interface.py
CHANGED
|
@@ -5,6 +5,7 @@ Gradio interface for plotting policy.
|
|
| 5 |
import chess
|
| 6 |
import gradio as gr
|
| 7 |
import uuid
|
|
|
|
| 8 |
|
| 9 |
from lczerolens.encodings import encode_move
|
| 10 |
|
|
@@ -19,28 +20,57 @@ def compute_features_fn(
|
|
| 19 |
traj_fen,
|
| 20 |
feature_index
|
| 21 |
):
|
| 22 |
-
model_output,
|
| 23 |
root_fen=root_fen,
|
| 24 |
traj_fen=traj_fen
|
| 25 |
)
|
| 26 |
-
features = sae_output["
|
|
|
|
| 27 |
first_output = render_feature_index(
|
| 28 |
features,
|
| 29 |
model_output,
|
| 30 |
file_id,
|
| 31 |
-
|
| 32 |
-
|
| 33 |
)
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def render_feature_index(
|
| 39 |
features,
|
| 40 |
model_output,
|
| 41 |
file_id,
|
| 42 |
-
|
| 43 |
-
|
| 44 |
):
|
| 45 |
if file_id is None:
|
| 46 |
file_id = str(uuid.uuid4())
|
|
@@ -98,14 +128,14 @@ with gr.Blocks() as interface:
|
|
| 98 |
feature_index = gr.Slider(
|
| 99 |
label="Feature index",
|
| 100 |
minimum=0,
|
| 101 |
-
maximum=constants.
|
| 102 |
step=1,
|
| 103 |
value=0,
|
| 104 |
)
|
| 105 |
|
| 106 |
with gr.Group():
|
| 107 |
with gr.Row():
|
| 108 |
-
|
| 109 |
with gr.Row():
|
| 110 |
colorbar = gr.Plot(label="Colorbar")
|
| 111 |
with gr.Column():
|
|
@@ -114,8 +144,14 @@ with gr.Blocks() as interface:
|
|
| 114 |
features = gr.State(None)
|
| 115 |
model_output = gr.State(None)
|
| 116 |
file_id = gr.State(None)
|
|
|
|
| 117 |
compute_features.click(
|
| 118 |
compute_features_fn,
|
| 119 |
inputs=[features, model_output, file_id, root_fen, traj_fen, feature_index],
|
| 120 |
-
outputs=[features, model_output, file_id, board_image, colorbar,
|
| 121 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import chess
|
| 6 |
import gradio as gr
|
| 7 |
import uuid
|
| 8 |
+
import torch
|
| 9 |
|
| 10 |
from lczerolens.encodings import encode_move
|
| 11 |
|
|
|
|
| 20 |
traj_fen,
|
| 21 |
feature_index
|
| 22 |
):
|
| 23 |
+
model_output, pixel_acts, sae_output = global_variables.generator.generate(
|
| 24 |
root_fen=root_fen,
|
| 25 |
traj_fen=traj_fen
|
| 26 |
)
|
| 27 |
+
features = sae_output["features"]
|
| 28 |
+
x_hat = sae_output["x_hat"]
|
| 29 |
first_output = render_feature_index(
|
| 30 |
features,
|
| 31 |
model_output,
|
| 32 |
file_id,
|
| 33 |
+
traj_fen,
|
| 34 |
+
feature_index
|
| 35 |
)
|
| 36 |
+
|
| 37 |
+
half_a_dim = constants.ACTIVATION_DIM // 2
|
| 38 |
+
half_f_dim = constants.DICTIONARY_SIZE // 2
|
| 39 |
+
pixel_f_avg = features.mean(dim=0)
|
| 40 |
+
pixel_f_active = (features > 0).float().mean(dim=0)
|
| 41 |
+
pixel_p_avg = features.mean(dim=1)
|
| 42 |
+
pixel_p_active = (features > 0).float().mean(dim=1)
|
| 43 |
+
|
| 44 |
+
board = chess.Board(traj_fen)
|
| 45 |
+
if board.turn:
|
| 46 |
+
most_avg_pixels = pixel_p_avg.topk(5).indices.tolist()
|
| 47 |
+
most_active_pixels = pixel_p_active.topk(5).indices.tolist()
|
| 48 |
+
else:
|
| 49 |
+
most_avg_pixels = pixel_p_avg.view(8,8).flip(0).view(64).topk(5).indices.tolist()
|
| 50 |
+
most_active_pixels = pixel_p_active.view(8,8).flip(0).view(64).topk(5).indices.tolist()
|
| 51 |
+
|
| 52 |
+
info = f"Root WDL: {model_output['wdl'][0]}\n"
|
| 53 |
+
info += f"Traj WDL: {model_output['wdl'][1]}\n"
|
| 54 |
+
info += f"MSE loss: {torch.nn.functional.mse_loss(x_hat, pixel_acts, reduction='none').sum(dim=1).mean()}\n"
|
| 55 |
+
info += f"MSE loss (root): {torch.nn.functional.mse_loss(x_hat[:,:half_a_dim], pixel_acts[:,:half_a_dim], reduction='none').sum(dim=1).mean()}\n"
|
| 56 |
+
info += f"MSE loss (traj): {torch.nn.functional.mse_loss(x_hat[:,half_a_dim:], pixel_acts[:,half_a_dim:], reduction='none').sum(dim=1).mean()}\n"
|
| 57 |
+
info += f"L0 loss: {(features>0).sum(dim=1).float().mean()}\n"
|
| 58 |
+
info += f"L0 loss (c): {(features[:,:half_f_dim]>0).sum(dim=1).float().mean()}\n"
|
| 59 |
+
info += f"L0 loss (d): {(features[:,half_f_dim:]>0).sum(dim=1).float().mean()}\n"
|
| 60 |
+
info += f"Most active features (avg): {pixel_f_avg.topk(5).indices.tolist()}\n"
|
| 61 |
+
info += f"Most active features (active): {pixel_f_active.topk(5).indices.tolist()}\n"
|
| 62 |
+
info += f"Most active pixels (avg): {[chess.SQUARE_NAMES[p] for p in most_avg_pixels]}\n"
|
| 63 |
+
info += f"Most active pixels (active): {[chess.SQUARE_NAMES[p] for p in most_active_pixels]}"
|
| 64 |
+
|
| 65 |
+
return *first_output, info
|
| 66 |
|
| 67 |
|
| 68 |
def render_feature_index(
|
| 69 |
features,
|
| 70 |
model_output,
|
| 71 |
file_id,
|
| 72 |
+
traj_fen,
|
| 73 |
+
feature_index
|
| 74 |
):
|
| 75 |
if file_id is None:
|
| 76 |
file_id = str(uuid.uuid4())
|
|
|
|
| 128 |
feature_index = gr.Slider(
|
| 129 |
label="Feature index",
|
| 130 |
minimum=0,
|
| 131 |
+
maximum=constants.DICTIONARY_SIZE-1,
|
| 132 |
step=1,
|
| 133 |
value=0,
|
| 134 |
)
|
| 135 |
|
| 136 |
with gr.Group():
|
| 137 |
with gr.Row():
|
| 138 |
+
info = gr.Textbox(label="Info", lines=1, max_lines=20, value="")
|
| 139 |
with gr.Row():
|
| 140 |
colorbar = gr.Plot(label="Colorbar")
|
| 141 |
with gr.Column():
|
|
|
|
| 144 |
features = gr.State(None)
|
| 145 |
model_output = gr.State(None)
|
| 146 |
file_id = gr.State(None)
|
| 147 |
+
|
| 148 |
compute_features.click(
|
| 149 |
compute_features_fn,
|
| 150 |
inputs=[features, model_output, file_id, root_fen, traj_fen, feature_index],
|
| 151 |
+
outputs=[features, model_output, file_id, board_image, colorbar, info],
|
| 152 |
+
)
|
| 153 |
+
feature_index.change(
|
| 154 |
+
render_feature_index,
|
| 155 |
+
inputs=[features, model_output, file_id, traj_fen, feature_index],
|
| 156 |
+
outputs=[features, model_output, file_id, board_image, colorbar],
|
| 157 |
+
)
|