Spaces:
Runtime error
Runtime error
| from synthesizer.inference import Synthesizer | |
| from pydantic import BaseModel, Field | |
| from encoder import inference as speacker_encoder | |
| import torch | |
| import os | |
| from pathlib import Path | |
| from enum import Enum | |
| import ppg_extractor as Extractor | |
| import ppg2mel as Convertor | |
| import librosa | |
| from scipy.io.wavfile import write | |
| import re | |
| import numpy as np | |
| from mkgui.base.components.types import FileContent | |
| from vocoder.hifigan import inference as gan_vocoder | |
| from typing import Any, Tuple | |
| import matplotlib.pyplot as plt | |
| # Constants | |
| AUDIO_SAMPLES_DIR = f'sample{os.sep}' | |
| EXT_MODELS_DIRT = f'ppg_extractor{os.sep}saved_models' | |
| CONV_MODELS_DIRT = f'ppg2mel{os.sep}saved_models' | |
| VOC_MODELS_DIRT = f'vocoder{os.sep}saved_models' | |
| TEMP_SOURCE_AUDIO = f'wavs{os.sep}temp_source.wav' | |
| TEMP_TARGET_AUDIO = f'wavs{os.sep}temp_target.wav' | |
| TEMP_RESULT_AUDIO = f'wavs{os.sep}temp_result.wav' | |
| # Load local sample audio as options TODO: load dataset | |
| if os.path.isdir(AUDIO_SAMPLES_DIR): | |
| audio_input_selection = Enum('samples', list((file.name, file) for file in Path(AUDIO_SAMPLES_DIR).glob("*.wav"))) | |
| # Pre-Load models | |
| if os.path.isdir(EXT_MODELS_DIRT): | |
| extractors = Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt"))) | |
| print("Loaded extractor models: " + str(len(extractors))) | |
| else: | |
| raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.") | |
| if os.path.isdir(CONV_MODELS_DIRT): | |
| convertors = Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth"))) | |
| print("Loaded convertor models: " + str(len(convertors))) | |
| else: | |
| raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.") | |
| if os.path.isdir(VOC_MODELS_DIRT): | |
| vocoders = Enum('vocoders', list((file.name, file) for file in Path(VOC_MODELS_DIRT).glob("**/*gan*.pt"))) | |
| print("Loaded vocoders models: " + str(len(vocoders))) | |
| else: | |
| raise Exception(f"Model folder {VOC_MODELS_DIRT} doesn't exist.") | |
| class Input(BaseModel): | |
| local_audio_file: audio_input_selection = Field( | |
| ..., alias="输入语音(本地wav)", | |
| description="选择本地语音文件." | |
| ) | |
| upload_audio_file: FileContent = Field(default=None, alias="或上传语音", | |
| description="拖拽或点击上传.", mime_type="audio/wav") | |
| local_audio_file_target: audio_input_selection = Field( | |
| ..., alias="目标语音(本地wav)", | |
| description="选择本地语音文件." | |
| ) | |
| upload_audio_file_target: FileContent = Field(default=None, alias="或上传目标语音", | |
| description="拖拽或点击上传.", mime_type="audio/wav") | |
| extractor: extractors = Field( | |
| ..., alias="编码模型", | |
| description="选择语音编码模型文件." | |
| ) | |
| convertor: convertors = Field( | |
| ..., alias="转换模型", | |
| description="选择语音转换模型文件." | |
| ) | |
| vocoder: vocoders = Field( | |
| ..., alias="语音解码模型", | |
| description="选择语音解码模型文件(目前只支持HifiGan类型)." | |
| ) | |
| class AudioEntity(BaseModel): | |
| content: bytes | |
| mel: Any | |
| class Output(BaseModel): | |
| __root__: Tuple[AudioEntity, AudioEntity, AudioEntity] | |
| def render_output_ui(self, streamlit_app, input) -> None: # type: ignore | |
| """Custom output UI. | |
| If this method is implmeneted, it will be used instead of the default Output UI renderer. | |
| """ | |
| src, target, result = self.__root__ | |
| streamlit_app.subheader("Synthesized Audio") | |
| streamlit_app.audio(result.content, format="audio/wav") | |
| fig, ax = plt.subplots() | |
| ax.imshow(src.mel, aspect="equal", interpolation="none") | |
| ax.set_title("mel spectrogram(Source Audio)") | |
| streamlit_app.pyplot(fig) | |
| fig, ax = plt.subplots() | |
| ax.imshow(target.mel, aspect="equal", interpolation="none") | |
| ax.set_title("mel spectrogram(Target Audio)") | |
| streamlit_app.pyplot(fig) | |
| fig, ax = plt.subplots() | |
| ax.imshow(result.mel, aspect="equal", interpolation="none") | |
| ax.set_title("mel spectrogram(Result Audio)") | |
| streamlit_app.pyplot(fig) | |
| def convert(input: Input) -> Output: | |
| """convert(转换)""" | |
| # load models | |
| extractor = Extractor.load_model(Path(input.extractor.value)) | |
| convertor = Convertor.load_model(Path(input.convertor.value)) | |
| # current_synt = Synthesizer(Path(input.synthesizer.value)) | |
| gan_vocoder.load_model(Path(input.vocoder.value)) | |
| # load file | |
| if input.upload_audio_file != None: | |
| with open(TEMP_SOURCE_AUDIO, "w+b") as f: | |
| f.write(input.upload_audio_file.as_bytes()) | |
| f.seek(0) | |
| src_wav, sample_rate = librosa.load(TEMP_SOURCE_AUDIO) | |
| else: | |
| src_wav, sample_rate = librosa.load(input.local_audio_file.value) | |
| write(TEMP_SOURCE_AUDIO, sample_rate, src_wav) #Make sure we get the correct wav | |
| if input.upload_audio_file_target != None: | |
| with open(TEMP_TARGET_AUDIO, "w+b") as f: | |
| f.write(input.upload_audio_file_target.as_bytes()) | |
| f.seek(0) | |
| ref_wav, _ = librosa.load(TEMP_TARGET_AUDIO) | |
| else: | |
| ref_wav, _ = librosa.load(input.local_audio_file_target.value) | |
| write(TEMP_TARGET_AUDIO, sample_rate, ref_wav) #Make sure we get the correct wav | |
| ppg = extractor.extract_from_wav(src_wav) | |
| # Import necessary dependency of Voice Conversion | |
| from utils.f0_utils import compute_f0, f02lf0, compute_mean_std, get_converted_lf0uv | |
| ref_lf0_mean, ref_lf0_std = compute_mean_std(f02lf0(compute_f0(ref_wav))) | |
| speacker_encoder.load_model(Path("encoder{os.sep}saved_models{os.sep}pretrained_bak_5805000.pt")) | |
| embed = speacker_encoder.embed_utterance(ref_wav) | |
| lf0_uv = get_converted_lf0uv(src_wav, ref_lf0_mean, ref_lf0_std, convert=True) | |
| min_len = min(ppg.shape[1], len(lf0_uv)) | |
| ppg = ppg[:, :min_len] | |
| lf0_uv = lf0_uv[:min_len] | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| _, mel_pred, att_ws = convertor.inference( | |
| ppg, | |
| logf0_uv=torch.from_numpy(lf0_uv).unsqueeze(0).float().to(device), | |
| spembs=torch.from_numpy(embed).unsqueeze(0).to(device), | |
| ) | |
| mel_pred= mel_pred.transpose(0, 1) | |
| breaks = [mel_pred.shape[1]] | |
| mel_pred= mel_pred.detach().cpu().numpy() | |
| # synthesize and vocode | |
| wav, sample_rate = gan_vocoder.infer_waveform(mel_pred) | |
| # write and output | |
| write(TEMP_RESULT_AUDIO, sample_rate, wav) #Make sure we get the correct wav | |
| with open(TEMP_SOURCE_AUDIO, "rb") as f: | |
| source_file = f.read() | |
| with open(TEMP_TARGET_AUDIO, "rb") as f: | |
| target_file = f.read() | |
| with open(TEMP_RESULT_AUDIO, "rb") as f: | |
| result_file = f.read() | |
| return Output(__root__=(AudioEntity(content=source_file, mel=Synthesizer.make_spectrogram(src_wav)), AudioEntity(content=target_file, mel=Synthesizer.make_spectrogram(ref_wav)), AudioEntity(content=result_file, mel=Synthesizer.make_spectrogram(wav)))) |