Spaces:
Runtime error
Runtime error
| import logging | |
| import six | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.nn.utils.rnn import pack_padded_sequence | |
| from torch.nn.utils.rnn import pad_packed_sequence | |
| from .e2e_asr_common import get_vgg2l_odim | |
| from .nets_utils import make_pad_mask, to_device | |
| class RNNP(torch.nn.Module): | |
| """RNN with projection layer module | |
| :param int idim: dimension of inputs | |
| :param int elayers: number of encoder layers | |
| :param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional) | |
| :param int hdim: number of projection units | |
| :param np.ndarray subsample: list of subsampling numbers | |
| :param float dropout: dropout rate | |
| :param str typ: The RNN type | |
| """ | |
| def __init__(self, idim, elayers, cdim, hdim, subsample, dropout, typ="blstm"): | |
| super(RNNP, self).__init__() | |
| bidir = typ[0] == "b" | |
| for i in six.moves.range(elayers): | |
| if i == 0: | |
| inputdim = idim | |
| else: | |
| inputdim = hdim | |
| rnn = torch.nn.LSTM(inputdim, cdim, dropout=dropout, num_layers=1, bidirectional=bidir, | |
| batch_first=True) if "lstm" in typ \ | |
| else torch.nn.GRU(inputdim, cdim, dropout=dropout, num_layers=1, bidirectional=bidir, batch_first=True) | |
| setattr(self, "%s%d" % ("birnn" if bidir else "rnn", i), rnn) | |
| # bottleneck layer to merge | |
| if bidir: | |
| setattr(self, "bt%d" % i, torch.nn.Linear(2 * cdim, hdim)) | |
| else: | |
| setattr(self, "bt%d" % i, torch.nn.Linear(cdim, hdim)) | |
| self.elayers = elayers | |
| self.cdim = cdim | |
| self.subsample = subsample | |
| self.typ = typ | |
| self.bidir = bidir | |
| def forward(self, xs_pad, ilens, prev_state=None): | |
| """RNNP forward | |
| :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim) | |
| :param torch.Tensor ilens: batch of lengths of input sequences (B) | |
| :param torch.Tensor prev_state: batch of previous RNN states | |
| :return: batch of hidden state sequences (B, Tmax, hdim) | |
| :rtype: torch.Tensor | |
| """ | |
| logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens)) | |
| elayer_states = [] | |
| for layer in six.moves.range(self.elayers): | |
| xs_pack = pack_padded_sequence(xs_pad, ilens, batch_first=True, enforce_sorted=False) | |
| rnn = getattr(self, ("birnn" if self.bidir else "rnn") + str(layer)) | |
| rnn.flatten_parameters() | |
| if prev_state is not None and rnn.bidirectional: | |
| prev_state = reset_backward_rnn_state(prev_state) | |
| ys, states = rnn(xs_pack, hx=None if prev_state is None else prev_state[layer]) | |
| elayer_states.append(states) | |
| # ys: utt list of frame x cdim x 2 (2: means bidirectional) | |
| ys_pad, ilens = pad_packed_sequence(ys, batch_first=True) | |
| sub = self.subsample[layer + 1] | |
| if sub > 1: | |
| ys_pad = ys_pad[:, ::sub] | |
| ilens = [int(i + 1) // sub for i in ilens] | |
| # (sum _utt frame_utt) x dim | |
| projected = getattr(self, 'bt' + str(layer) | |
| )(ys_pad.contiguous().view(-1, ys_pad.size(2))) | |
| if layer == self.elayers - 1: | |
| xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1) | |
| else: | |
| xs_pad = torch.tanh(projected.view(ys_pad.size(0), ys_pad.size(1), -1)) | |
| return xs_pad, ilens, elayer_states # x: utt list of frame x dim | |
| class RNN(torch.nn.Module): | |
| """RNN module | |
| :param int idim: dimension of inputs | |
| :param int elayers: number of encoder layers | |
| :param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional) | |
| :param int hdim: number of final projection units | |
| :param float dropout: dropout rate | |
| :param str typ: The RNN type | |
| """ | |
| def __init__(self, idim, elayers, cdim, hdim, dropout, typ="blstm"): | |
| super(RNN, self).__init__() | |
| bidir = typ[0] == "b" | |
| self.nbrnn = torch.nn.LSTM(idim, cdim, elayers, batch_first=True, | |
| dropout=dropout, bidirectional=bidir) if "lstm" in typ \ | |
| else torch.nn.GRU(idim, cdim, elayers, batch_first=True, dropout=dropout, | |
| bidirectional=bidir) | |
| if bidir: | |
| self.l_last = torch.nn.Linear(cdim * 2, hdim) | |
| else: | |
| self.l_last = torch.nn.Linear(cdim, hdim) | |
| self.typ = typ | |
| def forward(self, xs_pad, ilens, prev_state=None): | |
| """RNN forward | |
| :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D) | |
| :param torch.Tensor ilens: batch of lengths of input sequences (B) | |
| :param torch.Tensor prev_state: batch of previous RNN states | |
| :return: batch of hidden state sequences (B, Tmax, eprojs) | |
| :rtype: torch.Tensor | |
| """ | |
| logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens)) | |
| xs_pack = pack_padded_sequence(xs_pad, ilens, batch_first=True) | |
| self.nbrnn.flatten_parameters() | |
| if prev_state is not None and self.nbrnn.bidirectional: | |
| # We assume that when previous state is passed, it means that we're streaming the input | |
| # and therefore cannot propagate backward BRNN state (otherwise it goes in the wrong direction) | |
| prev_state = reset_backward_rnn_state(prev_state) | |
| ys, states = self.nbrnn(xs_pack, hx=prev_state) | |
| # ys: utt list of frame x cdim x 2 (2: means bidirectional) | |
| ys_pad, ilens = pad_packed_sequence(ys, batch_first=True) | |
| # (sum _utt frame_utt) x dim | |
| projected = torch.tanh(self.l_last( | |
| ys_pad.contiguous().view(-1, ys_pad.size(2)))) | |
| xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1) | |
| return xs_pad, ilens, states # x: utt list of frame x dim | |
| def reset_backward_rnn_state(states): | |
| """Sets backward BRNN states to zeroes - useful in processing of sliding windows over the inputs""" | |
| if isinstance(states, (list, tuple)): | |
| for state in states: | |
| state[1::2] = 0. | |
| else: | |
| states[1::2] = 0. | |
| return states | |
| class VGG2L(torch.nn.Module): | |
| """VGG-like module | |
| :param int in_channel: number of input channels | |
| """ | |
| def __init__(self, in_channel=1, downsample=True): | |
| super(VGG2L, self).__init__() | |
| # CNN layer (VGG motivated) | |
| self.conv1_1 = torch.nn.Conv2d(in_channel, 64, 3, stride=1, padding=1) | |
| self.conv1_2 = torch.nn.Conv2d(64, 64, 3, stride=1, padding=1) | |
| self.conv2_1 = torch.nn.Conv2d(64, 128, 3, stride=1, padding=1) | |
| self.conv2_2 = torch.nn.Conv2d(128, 128, 3, stride=1, padding=1) | |
| self.in_channel = in_channel | |
| self.downsample = downsample | |
| if downsample: | |
| self.stride = 2 | |
| else: | |
| self.stride = 1 | |
| def forward(self, xs_pad, ilens, **kwargs): | |
| """VGG2L forward | |
| :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D) | |
| :param torch.Tensor ilens: batch of lengths of input sequences (B) | |
| :return: batch of padded hidden state sequences (B, Tmax // 4, 128 * D // 4) if downsample | |
| :rtype: torch.Tensor | |
| """ | |
| logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens)) | |
| # x: utt x frame x dim | |
| # xs_pad = F.pad_sequence(xs_pad) | |
| # x: utt x 1 (input channel num) x frame x dim | |
| xs_pad = xs_pad.view(xs_pad.size(0), xs_pad.size(1), self.in_channel, | |
| xs_pad.size(2) // self.in_channel).transpose(1, 2) | |
| # NOTE: max_pool1d ? | |
| xs_pad = F.relu(self.conv1_1(xs_pad)) | |
| xs_pad = F.relu(self.conv1_2(xs_pad)) | |
| if self.downsample: | |
| xs_pad = F.max_pool2d(xs_pad, 2, stride=self.stride, ceil_mode=True) | |
| xs_pad = F.relu(self.conv2_1(xs_pad)) | |
| xs_pad = F.relu(self.conv2_2(xs_pad)) | |
| if self.downsample: | |
| xs_pad = F.max_pool2d(xs_pad, 2, stride=self.stride, ceil_mode=True) | |
| if torch.is_tensor(ilens): | |
| ilens = ilens.cpu().numpy() | |
| else: | |
| ilens = np.array(ilens, dtype=np.float32) | |
| if self.downsample: | |
| ilens = np.array(np.ceil(ilens / 2), dtype=np.int64) | |
| ilens = np.array( | |
| np.ceil(np.array(ilens, dtype=np.float32) / 2), dtype=np.int64).tolist() | |
| # x: utt_list of frame (remove zeropaded frames) x (input channel num x dim) | |
| xs_pad = xs_pad.transpose(1, 2) | |
| xs_pad = xs_pad.contiguous().view( | |
| xs_pad.size(0), xs_pad.size(1), xs_pad.size(2) * xs_pad.size(3)) | |
| return xs_pad, ilens, None # no state in this layer | |
| class Encoder(torch.nn.Module): | |
| """Encoder module | |
| :param str etype: type of encoder network | |
| :param int idim: number of dimensions of encoder network | |
| :param int elayers: number of layers of encoder network | |
| :param int eunits: number of lstm units of encoder network | |
| :param int eprojs: number of projection units of encoder network | |
| :param np.ndarray subsample: list of subsampling numbers | |
| :param float dropout: dropout rate | |
| :param int in_channel: number of input channels | |
| """ | |
| def __init__(self, etype, idim, elayers, eunits, eprojs, subsample, dropout, in_channel=1): | |
| super(Encoder, self).__init__() | |
| typ = etype.lstrip("vgg").rstrip("p") | |
| if typ not in ['lstm', 'gru', 'blstm', 'bgru']: | |
| logging.error("Error: need to specify an appropriate encoder architecture") | |
| if etype.startswith("vgg"): | |
| if etype[-1] == "p": | |
| self.enc = torch.nn.ModuleList([VGG2L(in_channel), | |
| RNNP(get_vgg2l_odim(idim, in_channel=in_channel), elayers, eunits, | |
| eprojs, | |
| subsample, dropout, typ=typ)]) | |
| logging.info('Use CNN-VGG + ' + typ.upper() + 'P for encoder') | |
| else: | |
| self.enc = torch.nn.ModuleList([VGG2L(in_channel), | |
| RNN(get_vgg2l_odim(idim, in_channel=in_channel), elayers, eunits, | |
| eprojs, | |
| dropout, typ=typ)]) | |
| logging.info('Use CNN-VGG + ' + typ.upper() + ' for encoder') | |
| else: | |
| if etype[-1] == "p": | |
| self.enc = torch.nn.ModuleList( | |
| [RNNP(idim, elayers, eunits, eprojs, subsample, dropout, typ=typ)]) | |
| logging.info(typ.upper() + ' with every-layer projection for encoder') | |
| else: | |
| self.enc = torch.nn.ModuleList([RNN(idim, elayers, eunits, eprojs, dropout, typ=typ)]) | |
| logging.info(typ.upper() + ' without projection for encoder') | |
| def forward(self, xs_pad, ilens, prev_states=None): | |
| """Encoder forward | |
| :param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D) | |
| :param torch.Tensor ilens: batch of lengths of input sequences (B) | |
| :param torch.Tensor prev_state: batch of previous encoder hidden states (?, ...) | |
| :return: batch of hidden state sequences (B, Tmax, eprojs) | |
| :rtype: torch.Tensor | |
| """ | |
| if prev_states is None: | |
| prev_states = [None] * len(self.enc) | |
| assert len(prev_states) == len(self.enc) | |
| current_states = [] | |
| for module, prev_state in zip(self.enc, prev_states): | |
| xs_pad, ilens, states = module(xs_pad, ilens, prev_state=prev_state) | |
| current_states.append(states) | |
| # make mask to remove bias value in padded part | |
| mask = to_device(self, make_pad_mask(ilens).unsqueeze(-1)) | |
| return xs_pad.masked_fill(mask, 0.0), ilens, current_states | |
| def encoder_for(args, idim, subsample): | |
| """Instantiates an encoder module given the program arguments | |
| :param Namespace args: The arguments | |
| :param int or List of integer idim: dimension of input, e.g. 83, or | |
| List of dimensions of inputs, e.g. [83,83] | |
| :param List or List of List subsample: subsample factors, e.g. [1,2,2,1,1], or | |
| List of subsample factors of each encoder. e.g. [[1,2,2,1,1], [1,2,2,1,1]] | |
| :rtype torch.nn.Module | |
| :return: The encoder module | |
| """ | |
| num_encs = getattr(args, "num_encs", 1) # use getattr to keep compatibility | |
| if num_encs == 1: | |
| # compatible with single encoder asr mode | |
| return Encoder(args.etype, idim, args.elayers, args.eunits, args.eprojs, subsample, args.dropout_rate) | |
| elif num_encs >= 1: | |
| enc_list = torch.nn.ModuleList() | |
| for idx in range(num_encs): | |
| enc = Encoder(args.etype[idx], idim[idx], args.elayers[idx], args.eunits[idx], args.eprojs, subsample[idx], | |
| args.dropout_rate[idx]) | |
| enc_list.append(enc) | |
| return enc_list | |
| else: | |
| raise ValueError("Number of encoders needs to be more than one. {}".format(num_encs)) | |